Skip to main content

Morphological Diversity of the Lateral Line System in Teleostei

  • Chapter
  • First Online:
Fish Diversity of Japan

Abstract

The morphological diversity of the lateral line system in Teleostei is reviewed, referring especially to morphological, phylogenetic, and taxonomic studies for the system. The system comprises a number of sensory organs denominated neuromasts, along with associated tubular structures (lateral line canals) passing through specific bones and scales. Each component of the system (viz., the canals, scales, and neuromasts) varies in its morphology among the fishes, reflecting their respective habitats, habits, and phylogenetic backgrounds. In this chapter, a representative condition is introduced for lateral line canals, neuromasts, and associated cranial nerves, followed by derivative conditions observed in specific taxa. A heterochronic change, which is a mechanism leading to produce the morphological diversity of the system, is also mentioned. Furthermore, recent progresses in anatomical studies of the system in Apogonidae, Gobioidei, Kurtidae, and Pleuronectiformes are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahnelt H, Bohacek V (2004) The lateral line system of two sympatric Eastern Pacific gobiid fishes of the genus Lythrypnus (Teleostei: Gobiidae). Bull Mar Sci 74:31–51

    Google Scholar 

  • Ahnelt H, Ramler D, Madsen MØ, Jensen LF, Windhager S (2021) Diversity and sexual dimorphism in the head lateral line system in North Sea populations of threespine sticklebacks, Gasterosteus aculeatus (Teleostei: Gasterosteidae). Zoomorphology 140:103–117

    Google Scholar 

  • Akihito, Sakamoto K, Ikeda Y, Sugiyama K (2002) Suborder Gobioidei. In: Nakabo T (ed) Fishes of Japan with pictorial keys to the species. Tokai University Press, Tokyo, pp 1139–1310. English edition

    Google Scholar 

  • Allis EP (1889) The anatomy and development of the lateral line system in Amia calva. J Morphol 2:463–542. pls XXX–XLII

    Google Scholar 

  • Allis EP (1902) The lateral line sensory system in the Muraenidae. Int Mschr Anat Physiol 20:125–170. pls VI–VIII

    Google Scholar 

  • Allis EP (1922) The cranial anatomy of Polypterus, with special reference to Polypterus bichir. J Anat 56:189–294. pls III–XXIV

    CAS  PubMed  PubMed Central  Google Scholar 

  • Appelbaum S, Schemmel C (1983) Dermal sense organs and their significance in the feeding behavior of the common sole Solea vulgaris. Mar Ecol Prog Ser 3:29–36

    Google Scholar 

  • Arratia G, Huaquin L (1995) Morphology of the lateral line system and of the skin of diplomystid and certain primitive loricarioid catfishes and systematic and ecological considerations. Bonn Zool Monogr 36:1–110

    Google Scholar 

  • Asaoka R, Nakae M, Sasaki K (2011) Description and innervation of the lateral line system in two gobioids, Odontobutis obscura and Pterogobius elapoide (Teleostei: Perciformes). Ichthyol Res 58:51–61

    Google Scholar 

  • Asaoka R, Nakae M, Sasaki K (2012) The innervation and adaptive significance of extensively distributed neuromasts in Glossogobius olivaceus (Perciformes: Gobiidae). Ichthyol Res 59:143–150

    Google Scholar 

  • Asaoka R, Nakae M, Sasaki K (2014) Innervation of the lateral line system in Rhyacichthys aspro: the origin of superficial neuromast rows in gobioids (Perciformes: Rhyacichthyidae). Ichthyol Res 61:49–58

    Google Scholar 

  • Aurich HJ (1939) Die Gobiiden. (Ordnung: Gobioidea.). Int Rev ges Hydrobiol Hydrogr 38:125–183

    Google Scholar 

  • Balushkin AV (1996) Structure and evolution of body lateral lines of notothenioid fishes (Notothenioidei, Perciformes). J Ichthyol 36:419–429

    Google Scholar 

  • Balushkin AV, Orlovskaya MV (2019) Melanostigma meteori sp. n. (Zoarcidae): a new pelagic eelpout species from the Meteor Bank (southeastern Atlantic), with remarks on the polymerization of the lateral line in the family. J Ichthyol 59:135–143

    Google Scholar 

  • Becker EA, Bird NC, Webb JF (2016) Postembryonic development of canal and superficial neuromasts and the generation of two cranial lateral line phenotypes. J Morphol 277:1273–1291

    PubMed  Google Scholar 

  • Bergman LMR (2004) The cephalic lateralis system of cardinalfishes (Perciformes: Apogonidae) and its application to the taxonomy and systematics of the family. Dissertation, University of Hawaii, Honolulu, Hawaii. http://hdl.handle.net/10125/12014

  • Berra TM (2007) Freshwater fish distribution, 2nd edn. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Berra TM, Neira FJ (2003) Early life history of the Nurseryfish, Kurtus gulliveri (Perciformes: Kurtidae), from northern Australia. Copeia 2003:384–390

    Google Scholar 

  • Berra TM, Wedd D (2017) Salinity and spawning of nurseryfish, Kurtus gulliveri, in the Adelaide River of northern Australia with notes on electrofishing and photos of a male carrying eggs. Environ Biol Fish 100:959–967

    Google Scholar 

  • Betancur-R R, Broughton RE, Wiley EO, Carpenter K, López JA, Li C, Holcroft NI, Arcila D, Sanciangco M, Cureton JC II, Zhang F, Buser T, Campbell MA, Ballesteros JA, Roa-Varon A, Willis S, Borden WC, Rowley T, Reneau PC, Hough DJ, Lu G, Grande T, Arratia G, Ortí G (2013) The Tree of life and a new classification of bony fishes. PLoS Curr 5:ecurrents.tol.53ba26640df0ccaee75bb165c8c26288. https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288

    Article  PubMed  PubMed Central  Google Scholar 

  • Bird NC, Webb JF (2014) Heterochrony, modularity, and the functional evolution of the mechanosensory lateral line canal system of fishes. EvoDevo 5:21

    PubMed  PubMed Central  Google Scholar 

  • Bleckmann H, Tittel G, Blübaum-Gronau E (1989) Lateral line system of surface-feeding fish: anatomy, physiology and behavior. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, NY, pp 501–526

    Google Scholar 

  • Carpenter KE, Berra TM, Humphries JM Jr (2004) Swim bladder and posterior lateral line nerve of the nurseryfish, Kurtus gulliveri (Perciformes: Kurtidae). J Morphol 260:193–200

    PubMed  Google Scholar 

  • Chagnaud BP, Coombs S (2013) Information encoding and processing by the peripheral lateral line system. In: Coombs S, Bleckmann H, Fay R, Popper A (eds) The lateral line system. Springer, New York, NY, pp 151–194

    Google Scholar 

  • Clapp CM (1889) The lateral line system of Batrachus tau. J Morphol 15:223–264

    Google Scholar 

  • Clardy TR, Hilton EJ, Vogelbein WK (2015) Morphology and ontogeny of multiple lateral-line canals in the rock prickleback, Xiphister mucosus (Cottiformes: Zoarcoidei: Stichaeidae). J Morphol 276:1218–1229

    PubMed  Google Scholar 

  • Cole FJ (1898) Observations on the structure and morphology of the cranial nerves and lateral sense organs of fishes; with special reference to the genus Gadus. J Comp Neurol 7:115–221. pls 21–23

    Google Scholar 

  • Cole FJ, Johnston J (1901) Liverpool Marine Biological Committee memoirs. No. 8. Pleuronectes (the plaice). Trans Liverp Biol Soc 16:145–396. pls 1–11

    Google Scholar 

  • Collazo A, Fraser SE, Mabee PM (1994) A dual embryonic origin for vertebrate mechanoreceptors. Science 264:426–430

    CAS  PubMed  Google Scholar 

  • Collette BB, Gillis GB (1992) Morphology, systematics, and biology of the double-lined mackerels (Grammatorcynus, Scombridae). Fish Bull 90:13–53

    Google Scholar 

  • Coombs S (2001) Smart skins: information processing by lateral line flow sensors. Auton Robot 11:255–261

    Google Scholar 

  • Coombs S, Montgomery J (2014) The role of flow and the lateral line in the multisensory guidance of orienting behaviors. In: Bleckmann H, Mogdans J, Coombs S (eds) Flow sensing in air and water. Springer, Berlin, pp 65–101

    Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, NY, pp 553–593

    Google Scholar 

  • Cunningham JT (1890) A treatise of the common sole (Solea vulgaris), considered both as an organism and as a commodity. Marine Biological Association of the United Kingdom, Plymouth

    Google Scholar 

  • Dario FD (2004) Homology between the recessus lateralis and cephalic sensory canals, with the proposition of additional synapomorphies for the Clupeiformes and the Clupeoidei. Zool J Linnean Soc 141:257–270

    Google Scholar 

  • Dario FD, de Pinna MCC (2006) The supratemporal system and the pattern of ramification of cephalic sensory canals in Denticeps clupeoides (Denticipitoidei, Teleostei): additional evidence for monophyly of Clupeiformes and Clupeoidei. Pap Avulsos Zool 46:107–123

    Google Scholar 

  • Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of the lateral lines of fish. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, NY, pp 595–617

    Google Scholar 

  • Denton EJ, Gray JAB (1989) Some observations on the forces acting on neuromasts in fish lateral line canals. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Springer, New York, NY, pp 229–246

    Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral-line organs. Biol Rev 38:51–105

    CAS  PubMed  Google Scholar 

  • Engelmann J, Hanke W, Mogdans J, Bleckmann H (2000) Neurobiology: hydrodynamic stimuli and the fish lateral line. Nature 408:51–52

    CAS  PubMed  Google Scholar 

  • Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still- and running water. J Comp Physiol A 188:513–526

    CAS  Google Scholar 

  • Faucher K, Aubert A, Lagardere J-P (2003) Spatial distribution and morphological characteristics of the trunk lateral line neuromasts of the sea bass (Dicentrarchus labrax, L.; Teleostei, Serranidae). Brain Behav Evol 62:223–232

    PubMed  Google Scholar 

  • Fernholm B (1985) The lateral line system of cyclostomes. In: Foreman RE, Gorbman A, Dodd JM, Olsson R (eds) Evolutionary biology of primitive fishes. Springer, Boston, MA, pp 113–122

    Google Scholar 

  • Fields RD, Bullock TH, Lange GD (1993) Ampullary sense organs, peripheral, central and behavioral electroreception in chimeras (Hydrolagus, Holocephali, Chondrichthyes). Brain Behav Evol 41:279–289

    Google Scholar 

  • Fraser TH (2013) A new genus of cardinalfish (Apogonidae: Percomorpha), redescription of Archamia and resemblances and relationships with Kurtus (Kurtidae: Percomorpha). Zootaxa 3714:1–63

    PubMed  Google Scholar 

  • Freihofer WC (1970) Some nerve patterns and their systematic significance in paracanthopterygian, salmonoiform, gobioid and apogonid fishes. Proc Calif Acad Sci 38:215–264

    Google Scholar 

  • Freihofer WC (1972) Trunk lateral line nerves, hyoid arch gill rakers, and olfactory bulb location in atheriniform, mugilid, and percoid fishes. Occas Pap Calif Acad Sci 95:1–31

    Google Scholar 

  • Freihofer WC (1978) Cranial nerves of a percoid fish, Polycentrus schomburgkii (Family Nandidae). A contribution to the morphology and classification of the order Perciformes. Occas Pap Calif Acad Sci 128:1–78

    Google Scholar 

  • Fricke R (2018) Two new species of stargazers of the genus Uranoscopus (Teleostei: Uranoscopidae) from the western Pacific Ocean. Zootaxa 4476:157–167

    Google Scholar 

  • Fukuda E, Nakae M, Asaoka R, Sasaki K (2010) Branching patterns of trunk lateral line nerves in Pleuronectiformes: uniformity and diversity. Ichthyol Res 57:148–160

    Google Scholar 

  • Gardiner JM, Atema J (2014) Flow sensing in sharks: lateral line contributions to navigation and prey capture. In: Bleckmann H, Mogdans J, Coombs S (eds) Flow sensing in air and water. Springer, Berlin, pp 127–146

    Google Scholar 

  • Garman S (1899) Reports on an exploration off the west coasts of Mexico, Central and South America, and off the Galapogos Islands, in charge of Alexander Agassiz, by the United States Fish Commission Steamer “Albatross” during 1891, Lieut. Commander Z.L. Tanner, USN, Commanding. XXVI—the fishes. Mem Mus Comp Zoology Harv Coll 24:1–431. 1–97

    Google Scholar 

  • Ghysen A, Dambly-Chaudière C, Coves D, de la Gandara F, Ortega A (2012) Developmental origin of a major difference in sensory patterning between zebrafish and bluefin tuna. Evol Dev 14:204–211

    PubMed  PubMed Central  Google Scholar 

  • Ghysen A, Wada H, Dambly-Chaudière C (2014) Patterning the posterior lateral line in teleosts: evolution of development. In: Bleckman H, Mogdans J, Coombs SL (eds) Flow sensing in air and water. Springer, Berlin, pp 295–318

    Google Scholar 

  • Greene CW (1899) The phosphorescent organs in the toadfish, Porichthys notatus Girard. J Morphol 15:667–696

    Google Scholar 

  • Hardy GS (1984) Revision of the Acanthoclinidae (Pisces: Perciformes), with descriptions of a new genus and five new species. NZ J Zool 11:357–393

    Google Scholar 

  • Harvey R, Blaxter JHS, Hoyt ED (1992) Development of superficial and lateral line neuromasts in larvae and juveniles of plaice (Pleuronectes platessa) and sole (Solea solea). J Mar Biol Assoc UK 72:651–668

    Google Scholar 

  • Hirota K, Asaoka R, Nakae M, Sasaki K (2014) The lateral line system and its innervation in Zenarchopterus dunckeri (Beloniformes: Exocoetoidei: Zenarchopteridae): an example of adaptation to surface feeding in fishes. Ichthyol Res 62:286–292

    Google Scholar 

  • Hoese DF, Gill A (1993) Phylogenetic relationships of eleotridid fishes (Perciformes: Gobioidei). Bull Mar Sci 52:415–440

    Google Scholar 

  • Illick H (1956) A comparative study of the cephalic lateral-line system of North American Cyprinidae. Am Midl Nat 56:204–223

    Google Scholar 

  • Ishida Y, Asaoka R, Nakae M, Sasaki K (2015) The trunk lateral line system and its innervation in Mugil cephalus (Mugilidae: Mugiliformes). Ichthyol Res 62:253–257

    Google Scholar 

  • Ito T, Fukuda T, Morimune T, Hosoya K (2017) Evolution of the connection patterns of the cephalic lateral line canal system and its use to diagnose opsariichthyin cyprinid fishes (Teleostei, Cyprinidae). Zookeys 718:115–131

    Google Scholar 

  • Jakubowski M (1963) Cutaneous sense organs of fishes. I. The lateral-line organs in the Stone-perch (Acerina cernua L.). Acta Biol Cracov Zool 6:59–78

    Google Scholar 

  • Jakubowski M (1966) Cutaneous sense organs of fishes. Part IV. The lateral line organs in the perch-like Lucioperca lucioperca and perch Perca fluviatilis, their topography, innervation, vascularization and structure. Acta Biol Cracov Zool 9:136–149

    Google Scholar 

  • Jakubowski M (1974) Structure of the lateral-line canal system and related bones in the berycoid fish Hoplostethus mediterraneus Cuv. et Val. (Trachichthyidae, Pisces). Acta Anat 87:261–274

    CAS  PubMed  Google Scholar 

  • Janssen J (2004) Lateral line sensory ecology. In: von der Emde G, Mogdans J, Kapoor BG (eds) The senses of fish. Springer, Dordrecht, pp 231–264

    Google Scholar 

  • Johnson GD (1993) Percomorph phylogeny: progress and problems. Bull Mar Sci 52:3–28

    Google Scholar 

  • Johnson GD, Baldwin CC, Okiyama M, Tominaga Y (1996) Osteology and relationships of Pseudotrichonotus altivelis (Teleostei: Aulopiformes: Pseudotrichonotidae). Ichthyol Res 43:17–45

    Google Scholar 

  • Jones S, Silas EG (1961) On fishes of the subfamily Scomberomorinae (family Scombridae) from Indian waters. Indian J Fish 8:189–206

    Google Scholar 

  • Jordan DS, Snyder JO (1902) A review of the blennoid fishes of Japan. Proc U S Natl Mus 25:441–504

    Google Scholar 

  • Klein A, Münz H, Bleckmann H (2013) The functional significance of lateral line canal morphology on the trunk of the marine teleost Xiphister atropurpureus (Stichaeidae). J Comp Physiol A 199:735–749

    Google Scholar 

  • Larson HK (2001) A revision of the gobiid fish genus Mugilogobius (Teleostei: Gobioidei), and its systematic placement. Rec West Aust Mus Suppl 62:1–231

    Google Scholar 

  • Lawry JV (1973) A presumed near field pressure receptor in the snout of the lantern fish, Tarletonbeania crenularis (Myctophidae). Mar Behav Physiol 1:295–303

    Google Scholar 

  • Lekander B (1949) The sensory line system and the canal bones in the head of some Ostariophysi. Acta Zool 30:1–131

    Google Scholar 

  • Lisney TJ (2010) A review of the sensory biology of chimaeroid fishes (Chondrichthyes; Holocephali). Rev Fish Biol Fish 20:571–590

    Google Scholar 

  • Ma A, Shang X, Zhou Z, Wang X, Sun Z, Cui W, Xia D, Ma B (2016) Morphological variation and distribution of free neuromasts during half-smooth tongue sole Cynoglossus semilaevis ontogeny. Chin J Oceanol Limnol 35:244–250

    Google Scholar 

  • Ma ZQ, Herzog H, Jiang YG, Zhao YH, Zhang DY (2020) Exquisite structure of the lateral line system in eyeless cavefish Sinocyclocheilus tianlinensis contrast to eyed Sinocyclocheilus macrophthalmus (Cypriniformes: Cyprinidae). Integr Zool 15:314–328

    Google Scholar 

  • Mabuchi K, Fraser TH, Song H, Azuma Y, Nishida M (2014) Revision of the systematics of the cardinalfishes (Percomorpha: Apogonidae) based on molecular analyses and comparative reevaluation of morphological characters. Zootaxa 3846:151–203

    PubMed  Google Scholar 

  • Marranzino AN, Webb JF (2018) Flow sensing in the deep sea: the lateral line system of stomiiform fishes. Zool J Linnean Soc 183:945–965

    Google Scholar 

  • Marshall NB (1965) Systematic and biological studies of the Macrourid fishes (Anacanthini-Teleostii). Deep Sea Res Oceanog 12:299–322

    Google Scholar 

  • Marshall NJ (1996) Vision and sensory physiology: the lateral line systems of three deep-sea fish. J Fish Biol 49:239–258

    Google Scholar 

  • Maruska KP (2001) Morphology of the mechanosensory lateral line system in elasmobranch fishes: ecological and behavioral considerations. Environ Biol Fish 60:47–75

    Google Scholar 

  • Middlemiss KL, Cook DG, Jerrett AR, Davison W (2017) Morphology and hydro-sensory role of superficial neuromasts in schooling behaviour of yellow-eyed mullet (Aldrichetta forsteri). J Comp Physiol A 203:807–817

    Google Scholar 

  • Miller PJ (1978) The systematic position and origin of Gobius ocheticus Norman, 1927, from the Suez Canal. Zool J Linnean Soc 62:39–58

    Google Scholar 

  • Miller PJ (1998) The west African species of Eleotris and their systematic affinities (Teleostei: Gobioidei). J Nat Hist 32:273–296

    Google Scholar 

  • Miller PJ, Wongrat P (1979) A new goby (Teleostei: Gobiidae) from the South China Sea and its significance for gobioid classification. Zool J Linnean Soc 67:239–257

    Google Scholar 

  • Mogdans J (2019) Sensory ecology of the fish lateral-line system: morphological and physiological adaptations for the perception of hydrodynamic stimuli. J Fish Biol 95:53–72

    PubMed  Google Scholar 

  • Montgomery J, Bleckmann H, Coombs S (2014) Sensory ecology and neuroethology of the lateral line. In: Coombs S, Bleckmann H, Fay R, Popper A (eds) The lateral line system. Springer, New York, NY, pp 121–150

    Google Scholar 

  • Münz H (1979) Morphology and innervation of the lateral line system in Sarotherodon Niloticus (L.) (Cichlidae, Teleostei). Zoomorphologie 93:73–86

    Google Scholar 

  • Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157:555–568

    Google Scholar 

  • Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Springer, New York, NY, pp 285–297

    Google Scholar 

  • Nakae M, Hasegawa K (2021) The lateral line system and its innervation in the masu salmon Oncorhynchus masou masou (Salmonidae). Ichthyol Res (in press). https://doi.org/10.1007/s10228-021-00843-0

  • Nakae M, Sasaki K (2005) The lateral line system and its innervation in the boxfish Ostracion immaculatus (Tetraodontiformes: Ostraciidae): description and comparisons with other tetraodontiform and perciform conditions. Ichthyol Res 52:343–353

    Google Scholar 

  • Nakae M, Sasaki K (2006) Peripheral nervous system of the ocean sunfish Mola mola (Tetraodontiformes: Molidae). Ichthyol Res 53:233–246

    Google Scholar 

  • Nakae M, Sasaki K (2010) Lateral line system and its innervation in Tetraodontiformes with outgroup comparisons: descriptions and phylogenetic implications. J Morphol 271:559–579

    PubMed  Google Scholar 

  • Nakae M, Asai S, Sasaki K (2006) The lateral line system and its innervation in Champsodon snyderi (Champsodontidae): distribution of approximately 1000 neuromasts. Ichthyol Res 53:209–215

    Google Scholar 

  • Nakae M, Asaoka R, Wada H, Sasaki K (2012) Fluorescent dye staining of neuromasts in live fishes: an aid to systematic studies. Ichthyol Res 59:286–290

    Google Scholar 

  • Nakae M, Shinohara G, Miki K, Abe M, Sasaki K (2013) Lateral line system in Scomberomorus niphonius (Teleostei, Perciformes, Scombridae): recognition of 12 groups of superficial neuromasts in a rapidly-swimming species and a comment on function of highly branched lateral line canals. Bull Natl Mus Nat Sci Ser A 39:39–49

    Google Scholar 

  • Nakae M, Kuroki M, Sato M, Sasaki K (2021) The lateral line system and its innervation in the Japanese eel Anguilla japonica (Teleostei: Elopomorpha: Anguillidae). J Morphol 282:863–873

    PubMed  Google Scholar 

  • Nelson GJ (1969) Infraorbital bones and their bearing on the phylogeny and geography of Osteoglossomorph fishes. Am Mus Novit 2394:1–37

    Google Scholar 

  • Nelson GJ (1972) Cephalic sensory canals, pitlines, and the classification of esocoid fishes, with notes on galaxiids and other teleosts. Am Mus Novit 2492:1–49

    Google Scholar 

  • Nelson G (1984) Notes on the rostral organ of anchovies (Family Engraulidae). Jpn J Ichthyol 31:86–87

    Google Scholar 

  • Nelson JS (2006) Fishes of the world, 4th edn. Wiley, New York, NY

    Google Scholar 

  • Nelson JS, Grande TC, Wilson MVH (2016) Fishes of the world, 5th edn. Wiley, New York, NY

    Google Scholar 

  • van Netten SM, Kroes ABA (1989) Dynamic behavior and micromechanical properties of the cupula. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Springer, New York, NY, pp 247–263

    Google Scholar 

  • van Netten SM, McHenry MJ (2014) The biophysics of the fish lateral line. In: Coombs S, Bleckmann HR, Fay R, Popper AN (eds) The lateral line system. Springer, New York, NY, pp 99–119

    Google Scholar 

  • Nickles KR, Hu Y, Majoris JE, Buston PM, Webb JF (2020) Organization and ontogeny of a complex lateral line system in a goby (Elacatinus lori), with a consideration of function and ecology. Copeia 108:863–885

    Google Scholar 

  • Norris HW (1925) Observations upon the peripheral distribution of the cranial nerves of certain ganoid fishes (amia Lepidosteus, Polyodon, Scaphirhynchusm and Acipenser). J Comp Neurol 39:345–432

    Google Scholar 

  • Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Springer, New York, NY, pp 17–78

    Google Scholar 

  • Northcutt RG, Holmes PH, Albert JS (2000) Distribution and innervation of lateral line organs in the channel catfish. J Comp Neurol 421:570–592

    CAS  PubMed  Google Scholar 

  • Owens KN, Cunningham DE, Macdonald G, Rubel EW, Raible DW, Pujol R (2007) Ultrastructural analysis of aminoglycoside-induced hair cell death in the zebrafish lateral line reveals an early mitochondrial response. J Comp Neurol 502:522–543

    CAS  PubMed  Google Scholar 

  • Parenti LR (1981) A phylogenetic and biogeographic analysis of cyprinodontiform fishes (Teleostei, Atherinomorpha). Bull Am Mus Nat Hist 168:335–557

    Google Scholar 

  • Pastana MNL, Bockmann FA, Datovo A (2020) The cephalic lateral-line system of Characiformes (Teleostei: Ostariophysi): anatomy and phylogenetic implications. Zool J Linnean Soc 189:1–46

    Google Scholar 

  • Pezold FL, Cage B (2002) A review of the spinycheek sleepers, genus Eleotris (Teleostei: Eleotridae), of the West African species. Tulane Stud Zool Bot 31:19–63

    Google Scholar 

  • Piotrowski T, Northcutt RG (1996) The cranial nerves of the Senegal bichir, Polypterus senegalus [osteichthyes: actinopterygii: cladistia]. Brain Behav Evol 47:55–102

    CAS  PubMed  Google Scholar 

  • Prince A (1967) On four species of the gobiid fishes of the genus Eleotris found in Japan. Jpn J Ichthyol 14:135–166

    Google Scholar 

  • Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Bahav Evol 34:110–131

    CAS  Google Scholar 

  • Randall JE, Lachner EA, Fraser TH (1985) A revision of the indo-Pacific apogonid fish genus Pseudamia, with descriptions of three new species. Indo-Pacific Fishes 6:1–23

    Google Scholar 

  • Ray DL (1950) The peripheral nervous system of Lampanyctus leucopsarus. J Morphol 87:61–178

    CAS  PubMed  Google Scholar 

  • Reno HW (1969) Cephalic lateral-line systems of the cyprinid genus Hybopsis. Copeia 1969:736–773

    Google Scholar 

  • Rizzato PP, Bichuette ME (2017) The laterosensory canal system in epigean and subterranean Ituglanis (Siluriformes: Trichomycteridae), with comments about troglomorphism and the phylogeny of the genus. J Morphol 278:4–28

    PubMed  Google Scholar 

  • Rizzato PP, Pospisilova A, Hilton EJ, Bockmann FA (2020) Ontogeny and homology of cranial bones associated with lateral-line canals of the Senegal Bichir, Polypterus senegalus (Actinopterygii: Cladistii: Polypteriformes), with a discussion on the formation of lateral-line canal bones in fishes. J Anat 237:439–467

    PubMed  PubMed Central  Google Scholar 

  • Roper DS (1981) Superficial neuromasts of the flatfish Peltorhamphus novaezeelandiae (Günther). J Fish Biol 18:753–758

    Google Scholar 

  • Rouse GW, Pickles JO (1991) Ultrastructure of free neuromasts of Bathygobius fuscus (Gobiidae) and canal neuromasts of Apogon cyanosoma (Apogonidae). J Morphol 209:111–120

    CAS  PubMed  Google Scholar 

  • Russell IJ (1976) Amphibian lateral line receptors. In: Llinas R, Precht W (eds) Frog neurobiology. Springer, Berlin, pp 513–550

    Google Scholar 

  • Sanford CPJ (2000) Salmonoid fish osteology and phylogeny (Teleostei: Salmonoidei). A.R.G. Gantner Verjag KG Ruggell, Liechtenstein

    Google Scholar 

  • Sanzo L (1911) Distribuzione delle papille cutanee (organi ciatiformi) e suo valore sistematico nei Gobi. Mitt Zool Stat Neapel Berlin 20:249–328

    Google Scholar 

  • Sasaki K, Takiuye K, Nakae M (2007) Homologies of cephalic lateral line canals in Pseudorhombus pentophthalmus and Engyprosopon grandisquama (Pleuronectiformes): innervation and upper eye floor formation. Ichthyol Res 54:186–192

    Google Scholar 

  • Sasaki K, Tanaka Y, Akata Y (2006) Cranial morphology of Ateleopus japonicus (Ateleopodidae: Ateleopodiformes), with a discussion on metamorphic mouth migration and lampridiform affinities. Ichthyol Res 53:254–263

    Google Scholar 

  • Sato M, Asaoka R, Nakae M, Sasaki K (2017) The lateral line system and its innervation in Lateolabrax japonicus (Percoidei incertae sedis) and two apogonids (Apogonidae), with special reference to superficial neuromasts (Teleostei: Percomorpha). Ichthyol Res 64:308–330

    Google Scholar 

  • Sato M, Nakamoto T, Nakae M, Sasaki K (2018) The cephalic lateral line system and its innervation in Pardachirus pavoninus (Soleidae: Pleuronectiformes): comparisons between the ocular and blind sides. Ichthyol Res 65:334–345

    Google Scholar 

  • Sato M, Nakae M, Sasaki K (2019) Convergent evolution of the lateral line system in Apogonidae (Teleostei: Percomorpha) determined from innervation. J Morphol 280:1026–1045

    PubMed  Google Scholar 

  • Sato M, Nakae M, Sasaki K (2021a) The lateral line system in the Nurseryfish Kurtus gulliveri (Percomorpha: Kurtidae): a distribution and innervation of superficial neuromasts unique within percomorphs. Ichthyol Herpetol 109:31–42

    Google Scholar 

  • Sato M, Nakae M, Sasaki K (2021b) The paedomorphic lateral line system in Pseudamiops and Gymnapogon (Percomorpha, Apogonidae), with morphological and molecular-based phylogenetic considerations. J Morphol 282:652–678

    CAS  PubMed  Google Scholar 

  • Schemmel C (1967) Vergleichende untersuchungen an den hautsinnesorganen ober- und unterirdisch lebender Astyanax-formen. Z Morph Tiere 61:255–316

    Google Scholar 

  • Schlosser G (2002) Development and evolution of lateral line placodes in amphibians. II Evolutionary diversification. Zoology 105:177–193

    PubMed  Google Scholar 

  • Schmitz A, Bleckmann H, Mogdans J (2008) Organization of the superficial neuromast system in goldfish, Carassius auratus. J Morphol 269:751–761

    PubMed  Google Scholar 

  • Schwarzhans W (2014) Head and otolith morphology of the genera Hymenocephalus, Hymenogadus and Spicomacrurus (Macrouridae), with the description of three new species. Zootaxa 3888:1–73

    PubMed  Google Scholar 

  • Soares D, Niemiller ML (2013) Sensory adaptations of fishes to subterranean environments. Bioscience 63:274–283

    Google Scholar 

  • Song J, Northcutt RG (1991) Morphology, distribution and innervation of the lateral-line receptors of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:10–37

    CAS  PubMed  Google Scholar 

  • Springer VG, Freihofer WC (1976) Study of the monotypic fish family Pholidichthyidae (Perciformes). Smithson Contrib Zool 216:1–43

    Google Scholar 

  • Sumi K, Asaoka R, Nakae M, Sasaki K (2015) Innervation of the lateral line system in the blind cavefish Astyanax mexicanus (Characidae) and comparisons with the eyed surface-dwelling form. Ichthyol Res 62:420–430

    Google Scholar 

  • Tarby ML, Webb JF (2003) Development of the supraorbital and mandibular lateral line canals in the cichlid, Archocentrus nigrofasciatus. J Morphol 255:44–57

    PubMed  Google Scholar 

  • Thacker CE (2009) Phylogeny of Gobioidei and placement within Acanthomorpha, with a new classification and investigation of diversification and character evolution. Copeia 2009:93–104

    Google Scholar 

  • Thacker CE, Roje DM (2009) Phylogeny of cardinalfishes (Teleostei: Gobiiformes: Apogonidae) and the evolution of visceral bioluminescence. Mol Phylogenet Evol 52:735–745

    CAS  PubMed  Google Scholar 

  • Thacker CE, Satoh TP, Katayama E, Harrington RC, Eytan RI, Near TJ (2015) Molecular phylogeny of Percomorpha resolves Trichonotus as the sister lineage to Gobioidei (Teleostei: Gobiiformes) and confirms the polyphyly of Trachinoidei. Mol Phylogenet Evol 93:172–179

    PubMed  Google Scholar 

  • Verçoza G, Shibuya A, Bastos DA, Zuanon J, Py-Daniel LHR (2021) Organization of the cephalic lateral-line canals in Electrophorus varii de Santana, Wosiacki, Crampton, Sabaj, Dillman, Mendes-Júnior & Castro e Castro, 2019 (Gymnotiformes: Gymnotidae). Neotrop Ichthyol 19:1–19

    Google Scholar 

  • Voronina EP, Hughes DR (2013) Types and development pathways of lateral line scales in some teleost species. Acta Zool 94:154–166

    Google Scholar 

  • Voronina EP, Hughes DR (2018) Lateral line scale types and review of their taxonomic distribution. Acta Zool 99:65–86

    Google Scholar 

  • Voronina EP, Sideleva VG, Hughes DR (2021) Lateral line system of flatfishes (Pleuronectiformes): diversity and taxonomic distribution of its characters. Acta Zool 102:1–25

    CAS  Google Scholar 

  • Wada H, Kawakami K (2015) Size control during organogenesis: development of the lateral line organs in zebrafish. Develop Growth Differ 57:169–178

    Google Scholar 

  • Wada H, Hamaguchi S, Sakaizumi M (2008) Development of diverse lateral line patterns on the teleost caudal fin. Dev Dyn 237:2889–2902

    CAS  PubMed  Google Scholar 

  • Wada H, Ghysen A, Satou C, Higashijima S, Kawakami K, Hamaguchi S, Sakaizumi M (2010) Dermal morphogenesis controls lateral line patterning during postembryonic development of teleost fish. Dev Biol 340:583–594

    CAS  PubMed  Google Scholar 

  • Wada H, Dambly-Chaudiere C, Kawakami K, Ghysen A (2013) Innervation is required for sense organ development in the lateral line system of adult zebrafish. PNAS 110:5659–5664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wada H, Iwasaki M, Kawakami K (2014) Development of the lateral line canal system through a bone remodeling process in zebrafish. Dev Biol 392:1–14

    CAS  PubMed  Google Scholar 

  • Wark AR, Mills MG, Dang LH, Chan YF, Jones FC, Brady SD, Absher DM, Grimwood J, Schmutz J, Myers RM, Kingsley DM, Peichel CL (2012) Genetic architecture of variation in the lateral line sensory system of threespine sticklebacks. G3 2:1047–1056

    PubMed  PubMed Central  Google Scholar 

  • Webb JF (1989a) Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain Behav Evol 33:34–53

    CAS  PubMed  Google Scholar 

  • Webb JF (1989b) Developmental constrains and evolution of the lateral line system in teleost fishes. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, NY, pp 79–98

    Google Scholar 

  • Webb JF (1989c) Neuromast morphology and lateral line trunk canal ontogeny in two species of cichlids: an SEM study. J Morphol 20:253–268

    Google Scholar 

  • Webb JF (1990) Ontogeny and phylogeny of the trunk lateral line system in cichlid fishes. J Zool (Lond) 221:405–418

    Google Scholar 

  • Webb JF (2014a) Lateral line morphology and development and implications for the ontogeny of flow sensing in fishes. In: Bleckmann H, Mogdans J, Coombs S (eds) Flow sensing in air and water. Springer, Berlin, pp 247–270

    Google Scholar 

  • Webb JF (2014b) Morphological diversity, evolution and development of the mechanosensory lateral line system. In: Coombs S, Bleckmann H (eds) The lateral line system. Springer, New York, NY, pp 17–72

    Google Scholar 

  • Webb JF, Northcutt RG (1997) Morphology and distribution of pit organs and canal neuromasts in non-teleost bony fishes. Brain Behav Evol 50:139–151

    CAS  PubMed  Google Scholar 

  • Webb JF, Ramsay JB (2017) New interpretation of the 3-D configuration of lateral line scales and the lateral line canal contained within them. Copeia 105:339–347

    Google Scholar 

  • Webb JF, Shirey JE (2003) Postembryonic development of the cranial lateral line canals and neuromasts in zebrafish. Dev Dyn 228:370–385

    PubMed  Google Scholar 

  • Whitfield TT (2005) Lateral line: precocious phenotypes and planar polarity. Curr Biol 15(2):R67

    CAS  PubMed  Google Scholar 

  • Wohlfahrt TA (1937) Anatomische Untersuchungen über die Seitenkanäle der Sardine (Clupea pilchardus Walb). Z Morphol Oekol Tiere 33:381–411

    Google Scholar 

  • Wongrat P, Miller PJ (1991) The innervation of head neuromast rows in eleotridine gobies (Teleostei: Gobioidei). J Zool (Lond) 225:27–42

    Google Scholar 

  • Wonsettler AL, Webb JF (1997) Morphology and development of the multiple lateral line canals on the trunk in two species of Hexagrammos (Scorpaeniformes, Hexagrammidae). J Morphol 233:195–214

    PubMed  Google Scholar 

  • Yamanaka Y, Nakae M, Fukuda E, Sasaki K (2010) Monophyletic origin of the dorsally arched lateral line in Teleostei: evidence from nerve innervation patterns. Ichthyol Res 57:49–61

    Google Scholar 

  • Yamanaka T, Abe T, Yabe M (2012) First record of Ernogrammus zhirmunskii (Actinopterygii: Cottiformes: Stichaeidae) from Japan, with a description and a revised diagnosis. Species Div 17:127–133

    Google Scholar 

  • Yatsu A, Yasuda F, Taki Y (1978) New stichaeid fish, Dictyosoma rubrimaculata from Japan, with notes on the geographic dimorphism in Dictyosoma burgeri. Jpn J Ichthyol 25:40–50

    Google Scholar 

  • Yokogawa K, Endo H, Sakaji H (2008) Cynoglossus ochiaii, a new tongue sole from Japan (Pleuronectiformes: Cynoglossidae). Bull Natl Mus Nat Sci Ser A Suppl 2:115–127

    Google Scholar 

Download references

Acknowledgments

M. Nakae (National Museum of Nature and Science) provided helpful comments on the manuscript. The SEM observations and phylogenetic analysis (in Kurtidae and Apogonidae, respectively) mentioned in Sect. 16.6 were supported by S. Sakamoto and K. Yagyu (Research Instrument and Radio-isotope Research, Division of Biological Research, Science Research Center, Kochi University). Amami Wildlife Center (Ministry of the Environment, Government of Japan) permitted me to use its facilities for my research activities on Amami-Oshima Island. This research was supported by Japan Society for the Promotion of Science KAKENHI Grant Numbers: 19J13664, 21K20673 and the Fujiwara Natural History Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sato, M. (2022). Morphological Diversity of the Lateral Line System in Teleostei. In: Kai, Y., Motomura, H., Matsuura, K. (eds) Fish Diversity of Japan. Springer, Singapore. https://doi.org/10.1007/978-981-16-7427-3_16

Download citation

Publish with us

Policies and ethics