Skip to main content

Wood Deterioration by Insects

  • Chapter
  • First Online:
Biodeterioration of Wooden Cultural Heritage

Abstract

This chapter examines postharvest beetles and termites, as the principal xylophagous insects damaging wooden Cultural Heritage.

An introduction on wood-damaging insects is initially provided and several cases of insects’ infestation on cultural wooden artefacts and structures are reviewed.

Coleoptera order is then discussed and elements of its taxonomy and classification are given for taxa involved in wood deterioration. Its members’ morphology is then presented with features of their body and appendages. Their physiology is also presented, where their holometabolous life cycle, types of communication and boring behaviour are described.

The families Anobiidae, Ptinidae, Bostrichidae and Cerambycidae are then examined. Aspects of their taxonomy and phylogeny are introduced based on molecular and morphological data. Adults’ and larvae’ body morphology along with their bearing accessories are illustrated, whereas behavioural features including stridulation, tapping, host location for oviposition, flightlessness, myrmecophily or shamming death are discussed. Their world distribution and their niche, with reference to temperature, moisture and wood substrate such as species, grain orientation and presence of fungi are also mentioned. Wood boring, along with decay patterns like exit holes, tunnels morphology and frass texture are exemplified and feeding and digestion mechanisms utilizing enzymes from microbial symbionts are described.

Finally, the Termitoidae epifamily of the Blattodea order is explored. The nine extant termites’ families are grouped to “lower” and “higher” termites according to their evolutionary level, anatomy and feeding habits and they are further categorized to subterranean, drywood and dampwood termites, according to their niche.

The morphology of these eusocial insects follows, where the various casts’ members, like workers, soldiers and reproductives, are described. Termites’ life cycle and physiology, including paring in tandem, trophallaxis, swarming, communication, foraging and nest building are also considered. Their distribution in earth biomes, along with the nature of their niche, including nest types and feeding sources are discussed. Wood boring, digestion and decomposition mechanisms are finally presented along with features and patterns of decay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hadrobregmus pertinax (Linnaeus, 1758) synonyms: Anobium fagi (Herbst, 1783), Anobium pertinax (Linnaeus, 1758); Anobium striatum (Fabricius, 1787); Coelostethus pertinax (Linnaeus, 1758), Ptinus rugosus (Gmelin 1790).

  2. 2.

    Nicobium castaneum (Olivier 1790), synonyms: Nicobium fasciatum (Illiger, 1807), Nicobium hirtum (Dufour, 1843), Nicobium tomentosum (Mulsant and Rey 1863) (Roskov et al. 2019).

  3. 3.

    The Bostrichidae family includes the subfamily Lyctinae (formerly treated as a distinct family, Lyctidae).

  4. 4.

    Sclerites are commonly referred to as tergites or exoskeletal plates.

  5. 5.

    Spicules are minute pointed processes of the cuticle; spinules are vestiture of the cuticle (thorn-like outgrowth) less dense than spicules

  6. 6.

    Family: Anobiidae; Superfamily: Bostrichoidea; Infraorder: Bostrichiformia; Suborder: Polyphaga; Order: Coleoptera; Superorder: Holometabola; Infraclass: Neoptera; Subclass: Pterygota; Class: Insecta; Subphylum: Hexapoda; Phylum: Arthropoda; Superphylum: Ecdysozoa; Kingdom: Animalia.

  7. 7.

    Setae is a Latin word for bristles, or hair-like structures, (singular seta) (Capinera 2008).

  8. 8.

    Family: Ptinidae; Superfamily: Bostrichoidea; Infraorder: Bostrichiformia; Suborder: Polyphaga; Order: Coleoptera; Superorder: Holometabola; Infraclass: Neoptera; Subclass: Pterygota; Class: Insecta; Subphylum: Hexapoda; Phylum: Arthropoda; Superphylum: Ecdysozoa; Kingdom: Animalia.

  9. 9.

    Myrmecophily refers to mutualistic associations with ants; however, it can also refer to commensal or even parasitic interactions.

  10. 10.

    A behaviour found in social insects involving transfer of food, or other fluids among members of a community, or between members and guests, through mouth-to-mouth (stomodeal) or anus-to-mouth (proctodeal).

  11. 11.

    Family: Bostrichidae (syn. Bostrychidae); Superfamily: Bostrichoidea; Infraorder: Bostrichiformia; Suborder: Polyphaga; Order: Coleoptera; Superorder: Holometabola; Infraclass: Neoptera; Subclass: Pterygota; Class: Insecta; Subphylum: Hexapoda; Phylum: Arthropoda; Superphylum: Ecdysozoa; Kingdom: Animalia.

  12. 12.

    Family: Cerambycidae; Superfamily: Chrysomeloidea; Infraorder: Cucujiformia; Suborder: Polyphaga; Order: Coleoptera; Superorder: Holometabola; Infraclass: Neoptera; Subclass: Pterygota; Class: Insecta; Subphylum: Hexapoda; Phylum: Arthropoda; Superphylum: Ecdysozoa; Kingdom: Animalia.

  13. 13.

    Batesian mimicry, is a form of mimicry where a palatable insect shows a visual resemblance to a less palatable one, for reducing predation (Capinera 2008).

  14. 14.

    Epifamily: Termitoidea; Superfamily: Blattoidea; Infraorder: Isoptera; Order: Blattodea; Superorder: Dictyoptera; Subclass: Pterygota; Class: Insecta; Phylum: Arthropoda; Kingdom: Animalia (Krishna et al. 2013).

  15. 15.

    Eusocial insects demonstrate a) overlapping generations, b) reproductive castes and c) cooperative brood care (Zablotny 2009).

  16. 16.

    Physogastric queen is able to increase its size without the use of cuticular moulting (Bordereau 1982). Its abdomen can be distended to 500–1000% of its original size because of the great development of the ovaries and she may produce an enormous number of eggs (Gullan and Cranston 2014).

References

  • Acharya, S. (2014). Termite fecal pellets. Accessed from https://commons.wikimedia.org/wiki/File:Termite_Fecal_Pellets.jpg

  • Akotsen-Mensah, C., & Philips, T. K. (2009). Description of a new genus of spider beetle (Coleoptera: Ptinidae) from South Africa. Zootaxa, 2160, 51–67.

    Article  Google Scholar 

  • Alexander, K. N. A. (2017). A review of the status of the beetles of Great Britain: The wood-boring beetles, spider beetles, woodworm, false powder-post beetles, hide beetles and their allies – Derodontidoidea (Derodontidae) and Bostrichoidea (Dermestidae, Bostrichidae and Ptinidae). Species Status No. 33. Natural England

    Google Scholar 

  • Allsopp, D., Seal, K. J., & Gaylarde, C. C. (2004). Introduction to biodeterioration. Cambridge University Press.

    Google Scholar 

  • Arango, R. A., & Young, D. K. (2012). Death-watch and spider beetles of Wisconsin—Coleoptera: Ptinidae (158 pp.). Forest Service, Forest Products Laboratory, General Technical Report, FPL-GTR-209. Madison, WI: USDA.

    Google Scholar 

  • Arumugam, N., Kori, N. S. M., & Rahman, H. (2018). Termites identification. In Termites and sustainable management (pp. 27–45). Cham: Springer.

    Chapter  Google Scholar 

  • Baker, W. L. (1972). Eastern forest insects (Vol. 1166). US Forest Service.

    Google Scholar 

  • Bamber, R. K. (1987). Sapwood and heartwood. Forestry Commission of New South Wales, Technical Publication, No. 2. Beecroft: Wood Technology and Forest Research Division.

    Google Scholar 

  • Beccaloni, G., & Eggleton, P. (2013). Order blattodea. Zootaxa, 3703(1), 046–048.

    Article  Google Scholar 

  • Becker, G. (1957). Holzzerstörende Insekten im Hafenbau-und Werftholz von Chioggia (Norditalien) 1: 2. Beitrag zur Kenntnis mediterraner Holzschädlinge. Zeitschrift für Angewandte Entomologie, 41(2–3), 403–410.

    Google Scholar 

  • Bell, K. L., & Philips, T. K. (2008). Four new species of the myrmecophile Diplocotes Westwood (Coleoptera: Ptinidae) from Queensland and South Australia. Australian Journal of Entomology, 47(2), 80–86.

    Article  Google Scholar 

  • Bell, K. L., & Philips, T. K. (2009). New species of the myrmecophile Polyplocotes Westwood (Coleoptera: Ptinidae) from South Australia. Australian Journal of Entomology, 48(1), 15–24.

    Article  Google Scholar 

  • Bell, K. L., & Philips, T. K. (2012). Molecular systematics and evolution of the Ptinidae (Coleoptera: Bostrichoidea) and related families. Zoological Journal of the Linnean Society, 165(1), 88–108.

    Article  Google Scholar 

  • Bellamy, C. L., & Nelson, G. H. (2002). 41. Buprestidae Leach 1815. In R. H. Arnett Jr., M. C. Thomas, P. E. Skelley, & J. H. Frank (Eds.), American beetles Volume 2, Polyphaga: Scarabaeoidea through Curculionoidea (pp. 98–112). Boca Raton: CRC Press.

    Google Scholar 

  • Bellés, X. (1980). Ptinus (Pseudoptinus) lichenum Marsham, wood-boring ptinid (Col. Ptinidae). Boletín de la Estación Central de Ecología, 9(18), 89–91.

    Google Scholar 

  • Bellés, X. (1982). Idees sobre la classificació supragenèrica de la família Ptinidae (Coleoptera). Sessió Conjunta d’Entomologia, 61–65.

    Google Scholar 

  • Bellés, X. (1985a). Hàbitats i hàbits d’alimentació dels Gibbiinae (Coleoptera, Ptinidae). Butlletí de la Instituciò Catalana d’Història Natural, 50, 263–267.

    Google Scholar 

  • Bellés, X. (1985b). Sistemática, filogenia y biogeografía de la subfamilia Gibbiinae (Coleoptera, Ptinidae). Treballs del Museu de Zoologia, 3, 1–94.

    Google Scholar 

  • Bellés, X. (2009). Spider beetles (Coleoptera, Ptinidae) from the Socotra archipelago. Fauna of Arabia, 24, 145–154.

    Google Scholar 

  • Bellés, X., & Halstead, D. G. H. (1985). Identification and geographical distribution of Gibbium aequinoctiale Boieldieu and Gibbium psylloides (Czenpinski)(Coleoptera: Ptinidae). Journal of Stored Products Research, 21(3), 151–155.

    Article  Google Scholar 

  • Belmain, S. R. (1998). The biology of the deathwatch beetle, Xastobium rufouillosum de Geer (Coleoptera: Anobiidae). Doctoral dissertation, Birkbeck, University of London.

    Google Scholar 

  • Belmain, S. R., Simmonds, M. S. J., & Blaney, W. M. (1999). Deathwatch beetle, Xestobium rufovillosum, in historical buildings: Monitoring the pest and its predators. Entomologia experimentalis et applicata, 93(1), 97–104.

    Article  Google Scholar 

  • Belmain, S. R., Simmonds, M. S., & Blaney, W. M. (2000). Behavioral responses of adult deathwatch beetles, Xestobium rufovillosum de Geer (Coleoptera: Anobiidae), to light and dark. Journal of Insect Behavior, 13(1), 15–26.

    Article  Google Scholar 

  • Beutel, R. G., Friedrich, F., Yang, X. K., & Ge, S. Q. (2014). Insect morphology and phylogeny: A textbook for students of entomology. Walter de Gruyter.

    Google Scholar 

  • Bignell, D. E. (2011). Morphology, physiology, biochemistry and functional design of the termite gut: An evolutionary wonderland. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 375–412). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Bignell, D. E. (2018). Wood-feeding termites. In M. Ulyshen (Ed.), Saproxylic insects (Zoological monographs 1) (pp. 339–373). Cham: Springer.

    Chapter  Google Scholar 

  • Bignell, D. E., & Eggleton, P. (2000). Termites in ecosystems. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: evolution, sociality, symbioses, ecology (pp. 363–387). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Bignell, D. E., & Jones, D. T. (2014). A taxonomic index, with names of descriptive authorities of termite genera and species: An accompaniment to biology of termites: A modern synthesis (Bignell DE, Roisin Y, Lo N, Editors. 2011. Springer, Dordrecht. 576 pp.). Journal of Insect Science, 14(81), 33.

    Google Scholar 

  • Bignell, D. E., Roisin, Y., & Lo, N. (Eds.). (2011). Biology of termites: A modern synthesis. Dordrecht: Springer.

    Google Scholar 

  • Birch, M. C., & Keenlyside, J. J. (1991). Tapping behavior is a rhythmic communication in the death-watch beetle, Xestobium rufovillosum (Coleoptera: Anobiidae). Journal of Insect Behavior, 4(2), 257–263.

    Article  Google Scholar 

  • Blomquist, G. J., Jurenka, R., Schal, C., & Tittiger, C. (2012). Pheromone production: Biochemistry and molecular biology. In Insect endocrinology (pp. 523–567). Academic.

    Google Scholar 

  • Bordereau, C. (1982). Ultrastructure and formation of the physogastric termite queen cuticle. Tissue and Cell, 14(2), 371–396.

    Article  CAS  PubMed  Google Scholar 

  • Borowski, J., & Singh, S. (2017). Bostrichidae and Ptinidae: Ptininae (Insecta: Coleoptera) type collection at National Forest Insect Collection, Forest Research Institute, Dehradun (India). World Scientific News, 66, 193–224.

    Google Scholar 

  • Borowski, J., & Sławski, M. (2017). Bostrichidae (Coleoptera) of Socotra with description of two new subspecies. Acta Entomologica Musei Nationalis Pragae, 57(s1), 101–111.

    Article  Google Scholar 

  • Borowski, J., & Zahradníc, P. (2007). Ptinidae. Catalogue of Palaearctic Coleoptera, 4, 328–362.

    Google Scholar 

  • Bouchard, P., Bousquet, Y., Davies, A. E., Alonso-Zarazaga, M. A., Lawrence, J. F., Lyal, C. H., et al. (2011). Family-group names in Coleoptera (Insecta). ZooKeys, 88, 1–972.

    Article  Google Scholar 

  • Bravery, A. F., Berry, R. W., Carey, J. K., & Cooper, D. E. (1987). Recognising wood rot and insect damage in buildings (p. 120). Watford: Building Research Establishment.

    Google Scholar 

  • Bravery, A. F., Berry, R. W., Carey, J. K., & Cooper, D. E. (2010). Recognising wood rot and insect damage in buildings. Watford: Building Research Establishment.

    Google Scholar 

  • Brimblecombe, P., & Hayashi, M. (2018). Pressures from long term environmental change at the shrines and temples of Nikkō. Heritage Science, 6(1), 27.

    Article  Google Scholar 

  • Brugerolle, G., & Radek, R. (2006). Symbiotic protozoa of termites. In Intestinal microorganisms of termites and other invertebrates (pp. 243–269). Berlin: Springer.

    Google Scholar 

  • Brune, A. (2018). Methanogens in the digestive tract of termites. In J. H. P. Hackstein (Ed.), (Endo) symbiotic Methanogenic Archaea (pp. 81–101). Cham: Springer.

    Chapter  Google Scholar 

  • Brune, A., & Dietrich, C. (2015). The gut microbiota of termites: Digesting the diversity in the light of ecology and evolution. Annual Review of Microbiology, 69, 145–166.

    Article  CAS  PubMed  Google Scholar 

  • Brune, A., & Ohkuma, M. (2011). Role of the termite gut microbiota in symbiotic digestion. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 439–475). Dordrecht: Springer.

    Google Scholar 

  • Busvine, J. R. (1980). Wood-boring insects. In Insects and hygiene. The biology and control of insect pests of medical and domestic importance (3rd ed., pp. 421–448). Boston, MA: Springer.

    Google Scholar 

  • Butera, G., Ferraro, C., Alonzo, G., Colazza, S., & Quatrini, P. (2016). The gut microbiota of the wood-feeding termite Reticulitermes lucifugus (Isoptera; Rhinotermitidae). Annals of Microbiology, 66(1), 253–260.

    Article  CAS  Google Scholar 

  • Caneva, G., Nugari, M. P., & Salvadori, O. (1991). Biology in the conservation of works of art. ICCROM.

    Google Scholar 

  • Capinera, J. L. (Ed.). (2008). Encyclopedia of entomology. Netherlands: Springer.

    Google Scholar 

  • Chhotani, O. B. (1983). A review of the Rhinotermitidae and Stylotermitidae (Isoptera) from the oriental region. Oriental Insects, 17(1), 109–125.

    Article  Google Scholar 

  • Chiappini, E., & Aldini, R. N. (2011). Morphological and physiological adaptations of wood-boring beetle larvae in timber. Journal of Entomological and Acarological Research, 43(2), 47–59.

    Article  Google Scholar 

  • Chiappini, E., Molinari, P., Busconi, M., Callegari, M., Fogher, C., & Bani, P. (2010, June). Hylotrupes bajulus (L.)(Col., Cerambycidae): Nutrition and attacked material. In Proceedings of the 10th International Working Conference on Stored Product Protection (Vol. 27, pp. 97–103).

    Google Scholar 

  • Clausen, C. A. (2010). Chapter 14: Biodeterioration of wood. In Wood handbook: Wood as an engineering material (15 pp.). General Technical Report FPL–GTR–190, Forest Service, Forest Products Laboratory. Madison: USDA.

    Google Scholar 

  • Cline A., Ivie, M. A., Bellamy, C. L., Scher, J. (2009, January). A resource for wood boring beetles of the world: Wood boring beetle families, Lucid v. 3.4. USDA/APHIS/PPQ Center for Plant Health Science and Technology, Montana State University, and California Department of Food and Agriculture. Accessed June 6, 2019, from http://idtools.org/id/wbb/families/index.htm

  • Coulson, R. N., & Lund, A. E. (1982). The degradation of wood by insects. In D. D. Nicholas (Ed.), Wood deterioration and its prevention by preservative treatments (2nd ed.). Syracuse University Press.

    Google Scholar 

  • Coulson, R. N., & Witter, J. A. (1984). Forest entomology: Ecology and management. Wiley.

    Google Scholar 

  • Cragg, S. M. (2003). Marine wood boring arthropods: Ecology, functional anatomy, and control measures. In B. Goodell, D. D. Nicholas, & T. P. Schultz (Eds.), Introduction to wood deterioration and preservation (pp. 272–286).

    Google Scholar 

  • Cragg, S. M., Beckham, G. T., Bruce, N. C., Bugg, T. D., Distel, D. L., Dupree, P., et al. (2015). Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology, 29, 108–119.

    Article  CAS  PubMed  Google Scholar 

  • Cranshaw, W. (2010). Spider beetles in high plains integrated pest management. Accessed from https://wiki.bugwood.org/HPIPM:Spider_Beetles

  • Cranshaw, W. (2019). Photo, locust borer (Megacyllene robiniae) Number: 5445130 (Forster, 1771). Colorado State University. Accessed from Bugwood.org. https://www.ipmimages.org/browse/detail.cfm?imgnum=5445130

  • Cribb, B. W., Stewart, A., Huang, H., Truss, R., Noller, B., Rasch, R., & Zalucki, M. P. (2008). Unique zinc mass in mandibles separates drywood termites from other groups of termites. Naturwissenschaften, 95(5), 433–441.

    Article  CAS  PubMed  Google Scholar 

  • Crowson, R. A. (1986). The biology of the Coleoptera (2nd ed.). Academic Press.

    Google Scholar 

  • Cymorek, S. (1972). Nicobiuem castaneum (col. Anobiidae), a pest in wood materials and works of art. In Biodeterioration of materials (pp. 408–415). Proceedings of the 2nd International Biodeterioration Symposium, Lunteren, the Netherlands, 13–18 September 1971.

    Google Scholar 

  • Eaton, R. A., & Hale, M. D. (1993). Wood: Decay, pests and protection. Chapman and Hall.

    Google Scholar 

  • Edde, P. A. (2019). Biology, ecology, and control of Lasioderma serricorne (F.)(Coleoptera: Anobiidae): A review. Journal of Economic Entomology, 112(3), 1011–1031.

    Article  PubMed  Google Scholar 

  • Eggleton, P. (1994). Termites live in a pear-shaped world: A response to Platnick. Journal of Natural History, 28, 1209–1212.

    Article  Google Scholar 

  • Eggleton, P. (2000). Global patterns of termite diversity. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 25–51). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Eggleton, P. (2006). The termite gut habitat: Its evolution and co-evolution. In H. König & A. Varma (Eds.), Intestinal microorganisms of termites and other invertebrates (pp. 373–404). Berlin: Springer.

    Chapter  Google Scholar 

  • Eggleton, P. (2011). An introduction to termites: Biology, taxonomy and functional morphology. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 1–26). Dordrecht: Springer.

    Google Scholar 

  • Eggleton, P., Beccaloni, G., & Inward, D. (2007). Response to Lo et al. Biology Letters, 3(5), 564–565.

    Article  Google Scholar 

  • Emerson, A. E., & Krishna, K. (1975). The termite family Serritermitidae (Isoptera). American Museum Novitates, 2570.

    Google Scholar 

  • Engel, M. S., Grimaldi, D. A., & Krishna, K. (2009). Termites (Isoptera): Their phylogeny, classification, and rise to ecological dominance. American Museum Novitates, 1–27.

    Google Scholar 

  • Evans, A. V. (2014). Beetles of Eastern North America. Princeton University Press.

    Google Scholar 

  • Fall, H. C. (1905). Revision of the Ptinidae of boreal America. Transactions of the American Entomological Society (1890-), 31(2/3), 97–296.

    Google Scholar 

  • Florian, M. L. E. (1997). Heritage eaters: Insects and fungi in heritage collections.

    Google Scholar 

  • French, J. R. J. (1968). The distribution of the furniture beetle, Anobium punctatum (De Geer)(Coleoptera: Anobiidae), in New South Wales. Australian Journal of Entomology, 7(2), 115–122.

    Article  Google Scholar 

  • Gangwere, S. K., & Sastry, S. (2008). Wood-attacking insects. In J. L. Capinera (Ed.), Encyclopedia of entomology (pp. 4284–4293). Netherlands: Springer.

    Google Scholar 

  • Gardiner, P. C. (1958). The morphology of the reproductive system of Ptilinus pectinicornis L. with a note on the terminalia of the pupal abdomen (Coleoptera: Anobiidae). In Proceedings of the Royal Entomological Society of London. Series A, General entomology (Vol. 33, No. 4–6, pp. 56–64). Oxford: Blackwell.

    Google Scholar 

  • Gearner, O. M. (2019). A phylogenetic analysis of Bostrichoidea (Coleoptera) and revisions of the Southern African spider beetle genera Meziomorphum and Eutaphroptinus (Ptinidae: Coleoptera). MSc Thesis, Western Kentucky University, Masters Theses & Specialist Projects. Paper 3100.

    Google Scholar 

  • Gerberg, E. J. (2008). Powderpost beetles (Coleoptera: Bostrichidae: Lyctinae). In J. L. Capiner (Ed.), Encyclopedia of entomology (pp. 3031–3033). Netherlands: Springer.

    Google Scholar 

  • Gimmel, M. L., & Ferro, M. L. (2018). General overview of saproxylic Coleoptera. In M. D. Ulyshen (Ed.), Saproxylic insects (Zoological monographs 1) (pp. 51–128). Cham: Springer.

    Chapter  Google Scholar 

  • Goodell, B. (2001). Wood products: Deterioration by insects and marine organisms. In Encyclopedia of materials: Science and technology (pp. 9696–9702).

    Google Scholar 

  • Goulson, D., Birch, M. C., & Wyatt, T. D. (1994). Mate location in the deathwatch beetle, Xestobium rufovillosum De Geer (Anobiidae): Orientation to substrate vibrations. Animal Behaviour, 47(4), 899–907.

    Article  Google Scholar 

  • Grace, J. K. (1985). A spider beetle Sphaericus gibboides Boieldieu, (Coleoptera: Ptinidae) boring in wood in service. Pan-Pacific Entomologist, 61(4), 288–290.

    Google Scholar 

  • Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L., & Eggleton, P. (2019). Termites can decompose more than half of deadwood in tropical rainforest. Current Biology, 29(4), R118–R119.

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi, D., & Engel, M. S. (2005). Evolution of the insects. Cambridge University Press.

    Google Scholar 

  • Gullan, P. J., & Cranston, P. S. (2014). The insects: An outline of entomology. Wiley.

    Google Scholar 

  • Haack, R. A. (2017). Feeding biology of cerambycids. Chapter 3. In Q. Wang (Ed.), Cerambycidae of the world; biology and pest management (pp. 105–124). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Haack, R. A., Keena, M. A., & Eyre, D. (2017). Life history and population dynamics of Cerambycidae. Chapter 2. In Q. Wang (Ed.), Cerambycidae of the world; biology and pest management (pp. 71–103). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Hagen, S. (2015). The significance of tree, site and landscape variables on eight saproxylic beetles in hollow oaks. Master’s thesis, Norwegian University of Life Sciences, Ås.

    Google Scholar 

  • Hagstrum, D., & Subramanyam, B. (2016). Stored-product insect resource. Elsevier.

    Google Scholar 

  • Haverty, M. (2003). False powderpost or auger beetles. In J. T. Kliejunas, H. Harold Jr., G. A. DeNitto, A. Eglitis, D. A. Haugen, M. I. Harverty, J. A. Micales, B. M. Tkacz, & M. R. Powell (Eds.), Pest risk assessment of the importation into the United States of unprocessed logs and chips of eighteen Eucalypt species from Australia (pp. 93–96). Gen. Tech. Rep. FPL-137. Madison, WI: US Department of Agriculture, Forest Service, Forest Products Laboratory.

    Google Scholar 

  • Hayashi, M., Kigawa, R., Harada, M., Komine, Y., Kawanobe, W., & Ishizaki, T. (2013). Distribution of wooden-damaging beetles captured by adhesive traps in historic buildings in Nikko. In P. Querner, D. Pinniger, & A. Hammer (Eds.), Integrated pest management (IPM) in museums, archives and historic houses (pp. 76–84). Proceedings of the International Conference in Vienna, Austria, 2013.

    Google Scholar 

  • Hickin, N. E. (1963). The insect factor in wood decay. An account of wood-boring insects with particular reference to timber indoors. The Rentokil library. London: Hutchinson & Co.

    Google Scholar 

  • Howe, R. W. (1959). Studies on beetles of the family Ptinidae. XVII.—Conclusions and additional remarks. Bulletin of Entomological Research, 50(2), 287–326.

    Article  Google Scholar 

  • Howe, R. W., & Burges, H. D. (1951). Studies on beetles of the Family Ptinidae.∗ VI.—The biology of Ptinus fur (L.) and P. sexpunctatus Panzer. Bulletin of Entomological Research, 42(3), 499–511.

    Article  Google Scholar 

  • Hunt, D. (2012). Properties of wood in the conservation of historical wooden artifacts. Journal of Cultural Heritage, 13(3), S10–S15. Special issue on Wood science for conservation.

    Article  Google Scholar 

  • Hunt, T., Bergsten, J., Levkanicova, Z., Papadopoulou, A., John, O. S., Wild, R., et al. (2007). A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science, 318(5858), 1913–1916.

    Article  CAS  PubMed  Google Scholar 

  • Ibach, R. E. (2005). Biological properties. Handbook of wood chemistry and wood composites (pp. 99–120). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Inward, D., Beccaloni, G., & Eggleton, P. (2007a). Death of an order: A comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters, 3(3), 331–335.

    Article  CAS  PubMed  Google Scholar 

  • Inward, D. J., Vogler, A. P., & Eggleton, P. (2007b). A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Molecular Phylogenetics and Evolution, 44(3), 953–967.

    Article  CAS  PubMed  Google Scholar 

  • Irish, J. (1996). The southern African genera Stethomezium Hinton, Meziomorphum Pit and Lepimedozium Benes (Coleoptera, Ptinidae, Gibbiinae): Genus Stethomezium Hinton. Navorsinge van die Nasionale Museum: Researches of the National Museum, 12(10), 318–324.

    Google Scholar 

  • ITIS. (2019). Accessed from https://www.itis.gov/

  • Ivie, M. A. (2002). 69. Bostrichidae Latreille 1802. In R. H. Arnett Jr., M. C. Thomas, P. E. Skelley, & J. H. Frank (Eds.), American beetles polyphaga: Scarabaeoidea through Curculionoidea (Vol. 2, pp. 233–244). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Jacobs, S. (2013). Spider beetles. The Pennsylvania State University. Accessed from https://ento.psu.edu/extension/factsheets/spider-beetles.

  • Jones, D. T., & Eggleton, P. (2011). Global biogeography of termites: A compilation of sources. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 477–498). Dordrecht: Springer.

    Google Scholar 

  • Kariyanna, B., Mohan, M., & Gupta, R. (2017). Biology, ecology and significance of longhorn beetles (Coleoptera: Cerambycidae). Journal of Entomology and Zoology Studies, 5, 1207–1212.

    Google Scholar 

  • Kaslegard, A. S. (2011). Climate change and cultural heritage in the Nordic countries. Copenhagen: Nordic Council of Ministers.

    Google Scholar 

  • Kelley, S. J., Loferski, J. R., Salenikovich, A., & Stern, E. G. (2000). Wood structures: A global forum on the treatment, conservation, and repair of cultural heritage. USA: ASTM.

    Book  Google Scholar 

  • Kigawa, R., Harada, M., Hayashi, M., Komine, Y., Nomura, M., Fujii, Y., Fujiwara, Y., Torigoe, T., Imazu, S., Honda, M., Kawanobe, W., & Ishizaki, T. (2013). Large-scale survey of wood-boring anobiids by adhesive ribbons in historic buildings at the Nikko World Heritage Site and investigation of effective eradication measures during an extensive restoration. In P. Querner, D. Pinniger, & A. Hammer (Eds.), Integrated pest management (IPM) in museums, archives and historic houses (p. 85). Proceedings of the International Conference in Vienna, Austria, 2013.

    Google Scholar 

  • Kim, Y., & Singh, A. P. (2016). Wood as cultural heritage material and its deterioration by biotic and abiotic agents. In Y. S. Kim, R. Funada, & A. P. Singh (Eds.), Secondary xylem biology (pp. 233–257). Cambridge, MA: Academic Press.

    Chapter  Google Scholar 

  • Kim, S. H., Lee, H. J., Lee, M. Y., Jeong, S. H., & Chung, Y. J. (2017). Monitoring on biological distribution around historical wooden buildings adjacent to river-with the case study of Silleuksa Temple, Yeoju City. Journal of Conservation Science, 33(4), 267–274.

    Google Scholar 

  • Kisternaya, M., & Kozlov, V. (2012). Preservation of historic monuments in the “Kizhi” open-air museum (Russian Federation). Journal of Cultural Heritage, 13(3), S74–S78.

    Article  Google Scholar 

  • König, H., Fröhlich, J., & Hertel, H. (2006). Diversity and lignocellulolytic activities of cultured microorganisms. In Intestinal microorganisms of termites and other invertebrates (pp. 271–301). Berlin: Springer.

    Google Scholar 

  • König, H., Li, L., & Fröhlich, J. (2013). The cellulolytic system of the termite gut. Applied Microbiology and Biotechnology, 97(18), 7943–7962.

    Article  CAS  PubMed  Google Scholar 

  • Konsa, K., Tirrul, I., & Hermann, A. (2014). Wooden objects in museums: Managing biodeterioration situation. International Biodeterioration & Biodegradation, 86, 165–170.

    Article  CAS  Google Scholar 

  • Korb, J. (2011). Termite mound architecture, from function to construction. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 349–373). Dordrecht: Springer.

    Google Scholar 

  • Krishna, K., Grimaldi, D. A., Krishna, V., & Engel, M. S. (2013). Treatise on the Isoptera of the world: 1 Introduction (Bulletin of the American Museum of Natural History, 377, Vol. 1). New York: American Museum of Natural History.

    Google Scholar 

  • La Fage, J. P. (1988). Termite control: Changing attitudes and technologies. In Biodeterioration 7 (pp. 721–726). Dordrecht: Springer.

    Google Scholar 

  • Lawrence, J. F. (2010). Bostrichidae Latreille, 1802. In R. A. Leschen, R. Beutel, & J. F. Lawrence (Eds.), Handbook of zoology, Arthropoda: Insecta, Coleoptera, Beetles, Vol. 2 Morphology and systematics (Elateroidea, Bostrichiformia, Cucujiformia Partim) (pp. 209–217). Berlin: Walter de Gruyter.

    Google Scholar 

  • Lawrence, J. F., & Newton, A. F., Jr. (1995). Families and subfamilies of Coleoptera (with selected genera, notes, references and data on family-group names). In J. Pakaluk & S. A. Slipinski (Eds.), Biology, phylogeny, and classification of Coleoptera (pp. 779–1006). Papers Celebrating the 80th Birthday of Roy A. Crowson. Warszawa: Muzeum i Instytut Zoologii PAN.

    Google Scholar 

  • Lawrence, J., & Slipinski, A. (2013). Australian beetles: Morphology, classification and keys (Vol. 1). CSIRO.

    Google Scholar 

  • Lawrence, J. F., Ślipiski, A., Seago, A. E., Thayer, M. K., Newton, A. F., & Marvaldi, A. E. (2011). Phylogeny of the Coleoptera based on morphological characters of adults and larvae. In Annales zoologici (Vol. 61, No. 1, pp. 1–217). Museum and Institute of Zoology, Polish Academy of Sciences.

    Google Scholar 

  • Lee, K. S., Jeong, S. Y., & Chung, Y. J. (2000). Pest control managements for preservation of wooden cultural properties [Original title and text in Korean]. Conservation Studies, 21, 5–55.

    Google Scholar 

  • Lewis, V. R. (2009). Isoptera: (Termites). In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (2nd ed., pp. 535–538). London: Academic Press.

    Chapter  Google Scholar 

  • Lewis, V. R., & Seybold S. J. (2010). Wood-boring beetles in homes – Integrated pest management in the home. Pest Notes, Publication 7418, Statewide Integrated Pest Management Program Agriculture and Natural Resources.

    Google Scholar 

  • Lewis, V. R., Sutherland, A. M., & Haverty, M. I. (2014a). Drywood termites. Integrated pest management in and around the home. Pest Notes, publication 7415, University of California, Agriculture and Natural Resourses, Statewide Integrated Pest Management Program.

    Google Scholar 

  • Lewis, V. R., Sutherland, A. M., & Haverty, M. I. (2014b). Subterranean and other termites. Integrated pest management in and around the home. Pest Notes, publication 7440, University of California, Agriculture and Natural Resourses, Statewide Integrated Pest Management Program.

    Google Scholar 

  • Li, L., Fröhlich, J., & König, H. (2006). Cellulose digestion in the termite gut. In H. König & A. Varma (Eds.), Intestinal microorganisms of termites and other invertebrates (pp. 221–241). Berlin: Springer.

    Chapter  Google Scholar 

  • Li, W., Wang, Z., & Che, Y. (2017). The complete mitogenome of the wood-feeding cockroach Cryptocercus meridianus (Blattodea: Cryptocercidae) and its phylogenetic relationship among cockroach families. International Journal of Molecular Sciences, 18(11), 2397.

    Article  CAS  Google Scholar 

  • Liu, L. Y. (2010). New records of Bostrichidae (Insecta: Coleoptera, Bostrichidae, Bostrichinae, Lyctinae, Polycaoninae, Dinoderinae, Apatinae). Mitteilungen Muenchener Entomologischen Gesellschaft, 100, 103–117.

    Google Scholar 

  • Liu, L. Y., & Schönitzer, K. (2011). Phylogenetic analysis of the family Bostrichidae auct. at suprageneric levels. Mitteilungen Muenchener Entomologischen Gesellschaft, 101, 99–132.

    Google Scholar 

  • Liu, L. Y., Schönitzer, K., & Yang, J. T. (2008). A review of the literature on the life history of Bostrichidae. Mitteilungen Muenchener Entomologischen Gesellschaft, 98, 91–97.

    Google Scholar 

  • Lo, N., & Eggleton, P. (2011). Termite phylogenetics and co-cladogenesis with symbionts. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 27–50). Dordrecht: Springer.

    Google Scholar 

  • Lo, N., Engel, M. S., Cameron, S., Nalepa, C. A., Tokuda, G., Grimaldi, D., et al. (2007). Save Isoptera: A comment on Inward et al. Biology Letters, 3(5), 562–563.

    Article  PubMed  Google Scholar 

  • Lo, N., Tokuda, G., & Watanabe, H. (2011). Evolution and function of endogenous termite cellulases. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 51–67). Dordrecht: Springer.

    Google Scholar 

  • Lukowsky, D. (2017). Does conventional kiln drying of timber have a preventive effect against the house longhorn beetle (Hylotrupes bajulus)? International Wood Products Journal, 8(2), 101–106.

    Article  Google Scholar 

  • Manachini, B. (2017). Alien insect impact on cultural heritage and landscape: An underestimated problem. Conservation Science in Cultural Heritage, 15(2), 61–72.

    Google Scholar 

  • Matei, A., & Teodorescu, I. (2011). Xylophagous insects attack degree in wood pieces from the Romanian peasant museum, Bucharest. Romanian Journal of Biology, 56(2), 133–145.

    Google Scholar 

  • Mattsson, J., & Oftedal, T. (2004). Research on biodeterioration of cultural heritage in Norway. European Research on Cultural Heritage—State-of-the-Art Studies, 2, 477–480.

    Google Scholar 

  • Maynard, D. S., Crowther, T. W., King, J. R., Warren, R. J., & Bradford, M. A. (2015). Temperate forest termites: Ecology, biogeography, and ecosystem impacts. Ecological Entomology, 40(3), 199–210.

    Article  Google Scholar 

  • McHugh, J. V., & Liebherr, J. K. (2009). Coleoptera: (Beetles, Weevils, Fireflies). In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (2nd ed., pp. 183–201). London: Academic Press.

    Chapter  Google Scholar 

  • McKenna, D. D., Wild, A. L., Kanda, K., Bellamy, C. L., Beutel, R. G., Caterino, M. S., et al. (2015). The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Systematic Entomology, 40(4), 835–880.

    Article  Google Scholar 

  • McKenna, D. D. (2016). Molecular systematics of Coleoptera. In R. G. Beutel & R. A. B. Leschen (Eds.), Coleoptera, beetles Vol. 1: Morphology and systematics. Berlin: De Gruyter.

    Google Scholar 

  • Monné, M., Monné, M., & Wang, Q. (2017). General morphology, classification and biology of Cerambycidae. In Q. Wang (Ed.), Cerambycidae of the world: Biology and pest management (pp. 1–70). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Mori, H. (1978). Insect pests of wooden cultural properties and their control in Japan. Studies in Conservation, 23(Suppl 1), 15–17.

    Article  Google Scholar 

  • Mosneagu, M. (2012). The preservation of cultural heritage damaged by anobiid (Insecta, Coleoptera, Anobiidae). Academy of Romanian Scientist, 1(2), 32–65.

    Google Scholar 

  • Nalepa, C. A. (2011). Altricial development in wood-feeding cockroaches: The key antecedent of termite eusociality. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 69–95). Dordrecht: Springer.

    Google Scholar 

  • Nation, J. L. (2008). Alimentary canal and digestion. In J. L. Capinera (Ed.), Encyclopedia of entomology (pp. 111–118). Netherlands: Springer.

    Google Scholar 

  • Nilsson, T., & Daniel, G. (1990). Structure and the aging process of dry archaeological wood. In R. M. Rowell & R. J. Barbour (Eds.), Archaeological wood: Properties, chemistry, and preservation (Vol. 225, pp. 67–86). American Chemical Society.

    Google Scholar 

  • Noldt, U. (2009). Monitoring wood-destroying insects in wooden cultural heritage. In Wood science for conservation of cultural heritage (pp. 71–79). Proceedings of the International Conference Held by Cost Action IE0601 in Florence (Italy), 8–10 November 2007. Florence University Press.

    Google Scholar 

  • Oberst, S., Lai, J. C., & Evans, T. A. (2016). Termites utilise clay to build structural supports and so increase foraging resources. Scientific Reports, 6, 20990.

    Article  CAS  PubMed  Google Scholar 

  • Oberst, S., Lenz, M., Lai, J. C., & Evans, T. A. (2019). Termites manipulate moisture content of wood to maximize foraging resources. Biology Letters, 15(7), 20190365.

    Article  CAS  PubMed  Google Scholar 

  • Oh, J. S., & Jeong, J. C. (2009). Damage to the wooden cultural properties by Nicobium castaneum (Coleoptera: Anobiidae). Journal of Conservation Science, 25(3), 317–322.

    Google Scholar 

  • Oh, J. K., & Lee, J. J. (2014). Feasibility of ultrasonic spectral analysis for detecting insect damage in wooden cultural heritage. Journal of Wood Science, 60(1), 21–29.

    Article  CAS  Google Scholar 

  • Ohkuma, M., & Brune, A. (2011). Diversity, structure, and evolution of the termite gut microbial community. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 413–438). Dordrecht: Springer.

    Google Scholar 

  • Ohkuma, M., Noda, S., Hongoh, Y., Nalepa, C. A., & Inoue, T. (2009). Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Proceedings of the Royal Society B: Biological Sciences, 276(1655), 239–245.

    Article  CAS  PubMed  Google Scholar 

  • Parkin, E. A. (1933). The larvae of some wood-boring Anobiidae (Coleoptera). Bulletin of Entomological Research, 24(1), 33–68.

    Article  Google Scholar 

  • Pellerito, C., Di Marco, A. E., Di Natale, M. C., Pignataro, B., Scopelliti, M., & Sebastianelli, M. (2016). Scientific studies for the restoration of a wood painting of the Galleria Interdisciplinare Regionale della Sicilia—Palazzo Mirto di Palermo. Microchemical Journal, 124, 682–692.

    Article  CAS  Google Scholar 

  • Peters, B. C., Creffield, J. W., & Eldridge, R. H. (2002). Lyctine (Coleoptera: Bostrichidae) pests of timber in Australia: A literature review and susceptibility testing protocol. Australian Forestry, 65(2), 107–119.

    Article  Google Scholar 

  • Peters, B. C., Perkins, L. E., Cochrane, G. H., & Zalucki, M. P. (2017). Subterranean termite (Blattodea: Termitoidae) pests in metropolitan Brisbane, Australia, 1997–2006: Patterns and implications. Austral Entomology, 56(2), 218–224.

    Article  Google Scholar 

  • Philips, T. K. (1997). Systematics of the new world ptininae:(Coleoptera: Anobiidae). PhD Thesis, The Ohio State University.

    Google Scholar 

  • Philips, T. K. (2000). Phylogenetic analysis of the new world Ptininae (Coleoptera: Bostrichoidea). Systematic Entomology, 25(2), 235–262.

    Article  Google Scholar 

  • Philips T. K. (2002). 70. Anobiidae Fleming 1821. In R. H. Arnett Jr., M. C. Thomas, P. E. Skelley, & J. H. Frank (Eds.), American beetles Polyphaga: Scarabaeoidea through Curculionoidea (Vol. 2, pp. 245–260). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Philips, T. K., & Bell, K. L. (2010). Ptinidae Latreille 1802. Handbook of Zoology, Coleoptera, Beetles, Morphology and Systematics (Polyphaga partim), 2, 217–225.

    Google Scholar 

  • Philips, T. K., Ivie, M. A., & Ivie, L. L. (1998). Beetles (Coleoptera: Anobiidae: Ptininae): An unreported mode of. Proceedings of the Entomological Society of Washington, 100, 147–153.

    Google Scholar 

  • Philips, T. K., & Mynhardt, G. (2011). Description of Electrognostus intermedius, the first spider beetle from Dominican amber with implications on spider beetle phylogeny (Coleoptera Ptinidae). Entomapeiron (PS), 4(2), 37–51.

    Google Scholar 

  • Picard, F. (1919). Contribution à l’Etude du Peuplement d’un Végétal. La Faune Entomologique du Figuier. 1st Thesis, Faculté des Sciences de Paris, Editions des Annales du Service des Epiphyties, Libraire Lhomme.

    Google Scholar 

  • Pilt, K., Teder, M., Süda, I., & Noldt, U. (2014). In-situ measurement of microclimatic conditions and modeling of mechanical properties of timber structures–A case study on new church on Ruhnu Island, Estonia. International Biodeterioration & Biodegradation, 86, 158–164.

    Article  Google Scholar 

  • Pinniger, D. (1994). Insect pests in museums (3rd ed., p. 58). Dorset: Archetype Publications.

    Google Scholar 

  • Pinniger, D. (2010). Pest fact sheet 10: Spider beetles. Collections Trust.

    Google Scholar 

  • Pinniger, D., & Winsor, P. (2004). Integrated pest management: A guide for museums, libraries, and archives. Resource.

    Google Scholar 

  • Price, T., Brownell, K. A., Raines, M., Smith, C. L., & Gandhi, K. J. (2011). Multiple detections of two exotic Auger Beetles of the genus Sinoxylon (Coleoptera: Bostrichidae) in Georgia, USA. Florida Entomologist, 94(2), 354–356.

    Article  Google Scholar 

  • Prillinger, H., & König, H. (2006). The intestinal yeasts. In Intestinal microorganisms of termites and other invertebrates (pp. 319–334). Berlin: Springer.

    Google Scholar 

  • Querner, P. (2015). Insect pests and integrated pest management in museums, libraries and historic buildings. Insects, 6(2), 595–607.

    Article  PubMed  Google Scholar 

  • Querner, P., Simon, S., Morelli, M., & Fürenkranz, S. (2013). Insect pest management programmes and results from their application in two large museum collections in Berlin and Vienna. International Biodeterioration & Biodegradation, 84, 275–280.

    Article  Google Scholar 

  • Querner, P., Sterflinger, K., Piombino-Mascali, D., Morrow, J. J., Pospischil, R., & Piñar, G. (2018). Insect pests and integrated pest management in the Capuchin Catacombs of Palermo, Italy. International Biodeterioration & Biodegradation, 131, 107–114.

    Article  Google Scholar 

  • Rahman, H., Fernandez, K., & Arumugam, N. (2018). Termites infesting Malaysian forests: Case study from Bornean forest, Sabah, Malaysia. In Termites and sustainable management (pp. 97–118). Cham: Springer.

    Google Scholar 

  • Rees, D. P. (2004). Insects of stored products. CSIRO.

    Google Scholar 

  • Reinprecht, L. (2016). Wood deterioration, protection, and maintenance. London: Wiley Blackwell.

    Book  Google Scholar 

  • Robinson, W. H. (2005). Urban insects and arachnids: A handbook of urban entomology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Roisin, Y., & Korb, J. (2011). Social organisation and the status of workers in termites. In Biology of termites: A modern synthesis (pp. 133–164). Dordrecht: Springer.

    Google Scholar 

  • Rosel, A. (1969). Oviposition, egg development and other features of the biology of five species of Lyctidae (Coleoptera). Australian Journal of Entomology, 8(2), 145–152.

    Article  Google Scholar 

  • Roskov, Y., Ower, G., Orrell, T., Nicolson, D., Bailly, N., Kirk, P. M., Bourgoin, T., DeWalt, R. E., Decock, W., van Nieukerken, E., Zarucchi, J., & Penev, L. (Eds.). (2019). Species 2000 & ITIS Catalogue of Life. 2019 Annual Checklist. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-884X. Accessed from http://www.catalogueoflife.org/annual-checklist/2019

  • Rust, M. K., & Su, N. Y. (2012). Managing social insects of urban importance. Annual Review of Entomology, 57, 355–375.

    Article  CAS  PubMed  Google Scholar 

  • Saito, Y., Ohta, M., Yamamoto, H., Tai, T., Ohmura, W., Makihara, H., Noshiro, S., & Goto, O. (2008). Deterioration character of aged timbers: Insect damage and material aging of rafters in a historic building of Fukushoji-temple. Journal of the Japan Wood Research Society, 54(5), 255–262.

    Article  CAS  Google Scholar 

  • Scheffrahn, R. H. (2008). Termites (Isoptera). In J. L. Capinera (Ed.), Encyclopedia of entomology (pp. 3737–3747). Netherlands: Springer.

    Google Scholar 

  • Scheffrahn, R. H., Jones, S. C., Krecek, J., Chase, J. A., Mangold, J. R., & Su, N. Y. (2003). Taxonomy, distribution, and notes on the termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of Puerto Rico and the US Virgin Islands. Annals of the Entomological Society of America, 96(3), 181–201.

    Article  Google Scholar 

  • Schmidt, U. (2009). Photo: Hylotrupes bajulus (Linné, 1758) female, Familie: Cerambycidae size, 15,4 mm, Location: Mallorca Puerto De Soller. Accessed from https://commons.wikimedia.org/wiki/File:Hylotrupes_bajulus_(Linn%C3%A9,_1758)_female_(3962355019).jpg

  • Schmidt, U. (2016a). Photo: Anobium punctatum (Geer, 1774) Family: Ptinidae (Anobiidae), Size: 3,6 mm (2,5 to 5,0 mm), Location: Germany, Bavaria, Upper Franconia, Kulmbach. Accessed from https://www.flickr.com/photos/coleoptera-us/28692210695/in/photostream/

  • Schmidt, U. (2016b). Photo: Xestobium rufovillosum (Geer, 1774), Family: Ptinidae (Anobiidae), Size: 6,2 mm (5,0 to 9,0 mm), Location: Germany, Bavaria, Upper Franconia, Kulmbach, Rotmain valley, in a willow tree. Accessed from https://www.flickr.com/photos/coleoptera-us/28502251946/in/album-72157625639563918/

  • Schmidt, U. (2016c). Photo: Ptinus fur (Linné, 1758) Female, Family: Ptinidae Size: 3,8 mm (2,6 to 4,3 mm), Location: Germany, Bavaria, Upper Franconia, Kulmbach. Accessed from https://www.flickr.com/photos/coleoptera-us/27833028903

  • Schmidt, U. (2016d). Photo: Bostrichus capucinus (Linné, 1758), Family: Bostrychidae (Bostrichidae) (Lyctidae) Size: 12,7 mm (6,0 to 15,0 mm) Location: Germany, Bavaria, Upper Franconia. Accessed from https://www.flickr.com/photos/coleoptera-us/27941040505

  • Schmidt, U. (2016e). Photo: Dinoderus brevis (Horn 1878), Family: Bostrichidae Size: 2.7 mm (2.5 to 3.0 mm). Oxford University Museum of Natural History. Accessed from https://commons.wikimedia.org/wiki/File:Dinoderus_brevis_Horn_1878_(31918844386).png

  • Schmidt, U. (2016f). Photo: Lyctus linearis (Goeze, 1777), Family: Bostrichidae (Lyctinae) Size: 4,2 mm (2,5 to 5,5 mm), Location: Germany, Bavaria, Unterfranken, Winterhausen. Accessed from https://www.flickr.com/photos/coleoptera-us/28320400615/in/photostream/

  • Schmidt, U. (2018). Photo: Derolus blaisei Pic, 1923, Male, Family: Cerambycidae Size: 22 mm, Location: Vietnam, Yen Bai Prov., Country An Fu. Accessed from https://www.flickr.com/photos/coleoptera-us/29597064088/

  • Schuster, J. C. (2002). 25. PASSALIDAE Leach 1815. American Beetles: Polyphaga: Scarabaeoidea through Curculionoidea, 2, 12.

    Google Scholar 

  • Shaheen, F. (1985). The insect factor in deterioration of wooden cultural property. Conservation of Cultural Property in India, 18–20, 62–70.

    Google Scholar 

  • Shelton, T. G., & Grace, J. K. (2003). Termite physiology in relation to wood degradation and termite control. In B. Goodell, et al. (Eds.), Wood deterioration and preservation. ACS Symposium Series (Vol. 2003, pp. 242–252). Washington, DC: American Chemical Society.

    Google Scholar 

  • Slipinski, A., & Escalona, H. (2013). Australian longhorn beetles (Coleoptera: Cerambycidae): Vol. 1. Introduction and subfamily lamiinae. CSIRO.

    Google Scholar 

  • Slipinski, A., & Escalona, H. (2016). Australian longhorn beetles (Coleoptera: Cerambycidae) Volume 2: Subfamily Cerambycinae. Clayton: CSIRO Publishing.

    Book  Google Scholar 

  • Smiley, M. E., & Philips, T. K. (2011). Review of the South African spider beetle genus, Pseudomezium Pic, 1897 (Coleoptera: Ptinidae: Ptininae). African Entomology, 19(3), 572–596.

    Article  Google Scholar 

  • Šobotník, J., Bourguignon, T., Hanus, R., Weyda, F., & Roisin, Y. (2010). Structure and function of defensive glands in soldiers of Glossotermes oculatus (Isoptera: Serritermitidae). Biological Journal of the Linnean Society, 99(4), 839–848.

    Article  Google Scholar 

  • Šobotník, J., & Dahlsjö, C. A. L. (2017). Isoptera. In Reference module in life sciences (32 pp.). Amsterdam: Elsevier.

    Google Scholar 

  • Stehr, F. W. (2009). Larva. In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (2nd ed., pp. 551–552). London: Academic Press.

    Chapter  Google Scholar 

  • Stokland, J. N., Siitonen, J., & Jonsson, B. G. (2012). Biodiversity in dead wood. Cambridge University Press.

    Google Scholar 

  • Sujada, N., Sungthong, R., & Lumyong, S. (2014). Termite nests as an abundant source of cultivable actinobacteria for biotechnological purposes. Microbes and Environments, 9(2), 211–219.

    Article  Google Scholar 

  • Svacha, P., & Lawrence, J. F. (2014). Cerambycidae Latreille, 1802. In R. A. B. Leschen & R. G. Beutel (Eds.), Coleoptera, beetles: Vol. 3, Morphology and systematics (Phytophaga) (pp. 16–177).

    Google Scholar 

  • Thomas, M. C. (2008). Beetles (Coleoptera). In J. L. Capinera (Ed.), Encyclopedia of entomology (pp. 437–447). Netherlands: Springer.

    Google Scholar 

  • Thorne, B. L., Grimaldi, D. A., & Krishna, K. (2000). Early fossil history of the termites. In Termites: Evolution, sociality, symbioses, ecology (pp. 77–93). Dordrecht: Springer.

    Google Scholar 

  • Trematerra, P., & Pinniger, D. (2018). Museum pests–cultural heritage pests. In Recent advances in stored product protection (pp. 229–260). Berlin: Springer.

    Google Scholar 

  • Tschinkel, W. R. (2010). The foraging tunnel system of the Namibian desert termite. Journal of Insect Science, 10(65), 1–17.

    Article  Google Scholar 

  • Ulyshen, M. D. (2016). Wood decomposition as influenced by invertebrates. Biological Reviews, 91(1), 70–85.

    Article  PubMed  Google Scholar 

  • Unger, A., Schniewind, A., & Unger, W. (2001). Conservation of wood artifacts: A handbook. London: Springer Science & Business Media.

    Book  Google Scholar 

  • Vega, F. E., & Dowd, P. F. (2005). The role of yeasts as insect endosymbionts. Insect-fungal associations: Ecology and evolution (pp. 211–243). New York: Oxford University Press.

    Google Scholar 

  • Wang, Q. (2008). Longicorn, longhorned, or round-headed beetles (Coleoptera: Cerambycidae). In J. L. Capinera (Ed.), Encyclopedia of entomology (pp. 2227–2232). Netherlands: Springer.

    Google Scholar 

  • White, R. E. (1973). Type-species for world genera of Anobiidae (Coleoptera). Transactions of the American Entomological Society (1890-), 99(4), 415–475.

    Google Scholar 

  • White, P. R., & Birch, M. C. (1987). Female sex pheromone of the common furniture beetle Anobium punctatum (Coleoptera: Anobiidae): Extraction, identification, and bioassays. Journal of Chemical Ecology, 13(7), 1695–1706.

    Article  CAS  PubMed  Google Scholar 

  • Wood, D. L., & Storer, A. J. (2009). Forest habitats. In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (2nd ed., pp. 386–396). London: Academic Press.

    Chapter  Google Scholar 

  • Wu, L. W., Bourguignon, T., Šobotník, J., Wen, P., Liang, W. R., & Li, H. F. (2018). Phylogenetic position of the enigmatic termite family Stylotermitidae (Insecta: Blattodea). Invertebrate Systematics, 32(5), 1111–1117.

    Article  Google Scholar 

  • Yalcin, M., Taşçioğlu, C., Plarre, R., Akçay, Ç., & Busweiler, S. (2018). Investigation of natural durability of some native and exotic wood species against Hylotrupes bajulus (Cerambycidae) and Anobium punctatum (Anobiidae). Kastamonu University Journal of Forestry Faculty, 18(1), 83–91.

    Article  Google Scholar 

  • Yoder, J. A., Chambers, M. J., Tank, J. L., Keeney, G. D., & Miller, J. (2009). High temperature effects on water loss and survival examining the hardiness of female adults of the spider beetles, Mezium affine and Gibbium aequinoctiale. Journal of Insect Science, 9(1).

    Google Scholar 

  • Zabel, R. A., & Morrell, J. J. (1992). Wood microbiology: Decay and its prevention. Academic Press.

    Google Scholar 

  • Zablotny, J. E. (2009). Sociality. In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (2nd ed., pp. 928–935). London: Academic Press.

    Chapter  Google Scholar 

  • Zahradník, P. (2013). Beetles of the family Ptinidae of Central Europe. Zoological keys. Praha: Academia.

    Google Scholar 

  • Zahradnik, P., & Háva, J. (2014). Catalogue of the world genera and subgenera of the superfamilies Derodontoidea and Bostrichoidea (Coleoptera: Derodontiformia, Bostrichiformia). Zootaxa, 3754(4), 301–352.

    Article  PubMed  Google Scholar 

  • Zhao, Z., Ren, D., & Shih, C. (2019). Termitoidae–termites, Chapter 8. In Rhythms of insect evolution: Evidence from the Jurassic and Cretaceous in Northern China (pp. 113–119).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pournou, A. (2020). Wood Deterioration by Insects. In: Biodeterioration of Wooden Cultural Heritage. Springer, Cham. https://doi.org/10.1007/978-3-030-46504-9_7

Download citation

Publish with us

Policies and ethics