Skip to main content
Log in

Anatomy and ultrastructure floral osmophores of Catasetum fimbriatum (Orchidaceae)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Catasetum fimbriatum is a dioecious species whose flowers fully adapted to an euglossinophilic mode of pollination. Euglossini male bees collect the volatile fragrances which are produced in osmophores on the flowers. In order to understand the mechanism of scent secretion and floral interaction with the pollinator, we describe the location, histochemistry, anatomy, and ultrastructure of osmophores in pistillate and staminate flowers of this species. Fresh flowers were submerged in neutral red solution to locate the position of the osmophores. Other histochemical test performed includes the NADI reaction to detect terpenoids, Sudan IV for lipids, and Lugol’s iodine solution to detect starch. Anatomical and ultrastructural traits were studied with bright field and transmission electron microscopes, respectively. The location of osmophores differs between pistillate and staminate flowers. In pistillate flowers, secretory tissues were observed on the ribbed adaxial surface of the labellum, but not on its margins, whereas in staminate flowers, they were found throughout the adaxial surface of the labellum and especially in the fimbriae. Anatomy and ultrastructure of the osmophores in the labellum of both types of flowers were similar. They present characteristics of metabolically active cells, such as abundant mitochondria, rough endoplasmic reticulum, vesicles, plastids with starch grains, and lipid globules. Granulocrine secretion and cycles of cytoplasmic contraction and expansion appear to allow the release of products without involving the rupture of the cuticle. Individuals of Eufriesea auriceps and Euglossa sp. were captured in staminate and pistillate flowers but, it seems likely, that only the former pollinates this orchid species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackerman JD (1983) Specificity and mutual dependency of the orchid–euglossine bee interaction. Biol. J. Linn. Soc. 20:301–314

    Article  Google Scholar 

  • Adachi SA, Machado SR (2020) Lip morphology and ultrastructure of osmophores in Cyclopogon (Orchidaceae) reveal a degree of morphological differentiation among species. Protoplasma 257:1139–1148. https://doi.org/10.1007/s00709-020-01499-9

    Article  CAS  PubMed  Google Scholar 

  • Aliscioni SS, Torretta JP, Bello ME, Galati BG (2009) Elaiophores in Gomesa bifolia (Sims) M.W. Chase and N.H. Williams (Oncidiinae: Cymbidieae: Orchidaceae): structure and oil secretion. Ann Bot 104:1141–1149. https://doi.org/10.1093/aob/mcp199

    Article  PubMed  PubMed Central  Google Scholar 

  • Antoń S, Kamińska M, Stpiczyńska M (2012) Comparative structure of the osmophores in the flowers of Stanhopea graveolens Lindley and Cycnoches chlorochilon Klotzsch (Orchidaceae). Acta Agrobot 65:11–22. https://doi.org/10.5586/aa.2012.054

    Article  Google Scholar 

  • Arumugasamy K, Subramanian RB, Inamdar JA (1990) Cyathial nectaries of Euphorbia neriifolia L.: ultrastructure and secretion. Phytomorphology 40:281–288

    Google Scholar 

  • Ascensão L, Francisco A, Cotrim H, Pais MS (2005) Comparative structure of the labellum in Ophrys fusca and O. lutea (Orchidaceae). Am J Bot 92:1059–1067

    Article  PubMed  Google Scholar 

  • Avalos AA, Torretta JP, Lattar EC, Ferrucci MS (2020) Structure and development of the anthers and connective glands in two species of Stigmaphyllon (Malpighiaceae): are the heteromorphic anthers related to division of labour? Protoplasma 257:1165–1181

    Article  PubMed  Google Scholar 

  • Boff S, Demarco D, Marchi P, Alves-Dos-Santos I (2015) Perfume production in flowers of Angelonia salicariifolia attracts males of Euglossa annectans which do not promote pollination. Apidologie 46:84–91

    Article  CAS  Google Scholar 

  • Brandt K, Machado IC, Navarro DMAF, Dötterl S, Ayasse M, Milet-Pinheiro P (2020) Sexual dimorphism in floral scents of the neotropical orchid Catasetum arietinum and its possible ecological and evolutionary significance. AoB Plants 12:plaa030. https://doi.org/10.1093/aobpla030

    Article  Google Scholar 

  • Buzatto CR, Davies KL, Singer RB, Pires dos Santos R, van den Berg C (2012) A comparative survey of floral characters in Capanemia Barb. Rodr. (Orchidaceae: Oncidiinae). Ann Bot 109:135–144

    Article  PubMed  Google Scholar 

  • Carvalho R, Machado IC (2002) Pollination of Catasetum macrocarpum (Orchidaceae) by Eulaema bombiformis (Euglossini). Lindleyana 17:85–90

    Google Scholar 

  • Coté GG, Gibernau M (2012) Distribution of calcium oxalate crystals in floral organs of Araceae in relation to pollination strategy. Am J Bot 99:1231–1242. https://doi.org/10.3732/ajb.1100499

    Article  CAS  PubMed  Google Scholar 

  • Cseke LJ, Kaufman PB, Kirakosyan A (2007) The biology of essential oils in the pollination of flowers. Nat Prod Commun 2:1317–1336

    CAS  Google Scholar 

  • Curry KJ, McDowell LM, Judd WS, Stern WL (1991) Osmophores, floral features, and systematics of Stanhopea (Orchidaceae). Am J Bot 78:610–623

    Article  Google Scholar 

  • D’Ambrogio de Argüeso A (1986) Manual de técnicas en histología vegetal. Hemisferio Sur, Buenos Aires

    Google Scholar 

  • David R, Carde JP (1964) Coloration différentielle dês inclusions lipidique et terpeniques dês pseudophylles du Pin maritime au moyen du reactif nadi. C R Acad Sci Paris D 258:1338–1340

    CAS  Google Scholar 

  • de Melo MC, Borba EL, Paiva EAS (2010) Morphological and histological characterization of the osmophores and nectaries of four species of Acianthera (Orchidaceae: Pleurothallidinae). Plant Syst Evol 286:141–151

    Article  Google Scholar 

  • Dodson CH (1962) Pollination and variation in the subtribe Catasetinae (Orchidaceae). Missouri Botanical Garden Bulletin 49:35–56

    Article  Google Scholar 

  • Dodson CH, Frymire GP (1961) Preliminary studies in the genus Stanhopea (Orchidaceae). Missouri Botanical Garden Bulletin 48:137–172

    Article  Google Scholar 

  • Dressler RL (1982) Biology of the orchid bees (Euglossini). Annu Rev Ecol Syst 13:373–394. https://doi.org/10.1146/annurev.es.13.110182.002105

    Article  Google Scholar 

  • Dressler RL (1993) Phylogeny and classification of the orchid family. Cambridge University Press, Cambridge

    Google Scholar 

  • Dudareva N, Pichersky E (2000) Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122:627–633. https://doi.org/10.1104/pp.122.3.627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durkee LT (1983) The ultrastructure of floral and extrafloral nectaries. In: Bentley B, Elias T (eds) The biology of nectaries. Columbia University Press, New York, pp 1–29

    Google Scholar 

  • Eltz T, Whitten WM, Roubik DW, Linsenmair KE (1999) Fragrance collection, storage, and accumulation by individual male orchid bees. J Chem Ecol 25:157–176. https://doi.org/10.1023/A:1020897302355

    Article  CAS  Google Scholar 

  • Endress PK (1994) Floral structure and evolution of primitive angiosperms: recent advances. Plant Syst Evol 192:79–97

    Article  Google Scholar 

  • Esau K (1972) Anatomía vegetal. Trad. de J. Pons R. Ediciones Omega, Barcelona

  • Fahn A (1979) Secretory tissues in plants. Academic Press, London

    Google Scholar 

  • Fahn A (1988) Secretory tissues in vascular plants. New Phytol 108:229–257

    Article  PubMed  Google Scholar 

  • Fahn A (2000) Structure and function of secretory cells. In: Hallahan DL, Gray JC, Callow JA (eds) Advances in Botanical Research, Incorporating Advances in Plant Pathology, Volume 31, Plant Trichomes. Academic Press, London, pp 37–66

    Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev EcolEvol Syst 35:375–403

    Article  Google Scholar 

  • Franken EP, Pansarin LM, Pansarin ER (2016) Osmophore diversity in the Catasetum cristatum alliance (Orchidaceae: Catasetinae). Lankesteriana 16:317–327

    Article  Google Scholar 

  • Gonçalves-Souza P, Schlindwein C, Dötterl S, Paiva EAS (2017) Unveiling the osmophores of Philodendron adamantinum (Araceae) as a means to understanding interactions with pollinators. Ann Bot 119:533–543. https://doi.org/10.1093/aob/mcw236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández MP, Katinas L (2019) Technique for the identification of osmophores in flowers of herbarium material (TIOFH). Protoplasma 256:1753–1765. https://doi.org/10.1007/s00709-019-01398-8

    Article  PubMed  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Company, London

    Google Scholar 

  • Kettler BA, Solís SM, Ferrucci MS (2019) Comparative survey of secretory structures and floral anatomy of Cohniella cepula and Cohniella jonesiana (Orchidaceae: Oncidiinae). New evidences of nectaries and osmophores in the genus. Protoplasma 256:703–720

    Article  CAS  PubMed  Google Scholar 

  • Kimsey LS (1984) The behavioural and structural aspects of grooming and related activities in euglossine bees (Hymenoptera: Apidae). L. Zool. Lond. 204:541–550

    Article  Google Scholar 

  • Kirk PW (1970) Neutral red as a lipid fluorochrome. Stain Technol 45:1–4

  • Kowalkowska AK, Krawczyńska AT (2019) Anatomical features related with pollination of Neottia ovata (L.) Bluff and Fingerh. (Orchidaceae). Flora 255:24–33. https://doi.org/10.1016/j.flora.2019.03.015

    Article  Google Scholar 

  • Kowalkowska AK, Margońska HB, Kozieradzka-Kiszkurno M, Bohdanowicz J (2012) Studies on the ultrastructure of a three-spurred fumeauxiana form of Anacamptis pyramidalis. Plant Syst Evol 298:1025–1035. https://doi.org/10.1007/s00606-012-0611-y

    Article  Google Scholar 

  • Kowalkowska AK, Kozieradzka-Kiszkurno M, Turzyński S (2015) Morphological, histological and ultrastructural features of osmophores and nectary of Bulbophyllum wendlandianum (Kraenzl.) Dammer (B. section Cirrhopetalum Lindl., Bulbophyllinae Schltr., Orchidaceae). Plant Syst Evol 301:609–622

    Article  Google Scholar 

  • Kowalkowska AK, Turzyński S, Kozieradzka-Kiszkurno M, Wiśniewska N (2017) Floral structure of two species of Bulbophyllum section Cirrhopetalum Lindl.: B. weberi Ames and B. cumingii (Lindl.) Rchb. f. (Bulbophyllinae Schltr., Orchidaceae). Protoplasma 254:1431–1449. https://doi.org/10.1007/s00709-016-1034-3

    Article  CAS  PubMed  Google Scholar 

  • Marinho CR, Souza CD, Barros TC, Teixeira SP (2014) Scent glands in legume flowers. Plant Biol 16:215–226. https://doi.org/10.1111/plb.12000

    Article  CAS  PubMed  Google Scholar 

  • Milet-Pinheiro P, Gerlach G (2017) Biology of the Neotropical orchid genus Catasetum: a historical review on floral scent chemistry and pollinators. Perspectives in Plant Ecology, Evolution and Systematics 27:23–34

    Article  Google Scholar 

  • Milet-Pinheiro P, Navarro DMAF, Dötterl S, Carvalho AT, Pinto CE, Ayasse M, Schlindwein C (2015) Pollination biology in the dioecious orchid Catasetum uncatum: How does floral scent influence the behaviour of pollinators? Phytochemistry 116:149–161

    Article  CAS  PubMed  Google Scholar 

  • Nunes CEP, Gerlach G, Bandeira KD, Gobbo-Neto L, Pansarin ER, Sazima M (2017) Two orchids, one scent? Floral volatiles of Catasetum cernuum and Gongora bufonia suggest convergent evolution to a unique pollination niche. Flora 232:207–216

    Article  Google Scholar 

  • Pacek A, Stpiczyńska M (2007) The structure of elaiophores in Oncidium cheirophorum Rchb.f. and Ornithocephalus kruegeri Rchb.f. (Orchidaceae). Acta Agrobot 60:9–14. https://doi.org/10.5586/aa.2007.024

    Article  Google Scholar 

  • Paiva EAS (2009) Ultrastructure and post-floral secretion of the pericarpial nectaries of Erythrina speciosa (Fabaceae). Ann Bot 104:937–944

    Article  PubMed  PubMed Central  Google Scholar 

  • Paiva EAS (2016) How do secretory products cross the plant cell wall to be released? A new hypothesis involving cyclic mechanical actions of the protoplast. Ann Bot 117:533–540. https://doi.org/10.1093/aob/mcw012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paiva EAS, Dötterl S, De-Paula OC et al (2019) Osmophores of Caryocar brasiliense (Caryocaraceae): a particular structure of the androecium that releases an unusual scent. Protoplasma 256:971–981. https://doi.org/10.1007/s00709-019-01356-4

    Article  CAS  PubMed  Google Scholar 

  • Pansarin ER, Bittrich V, Amaral MCE (2006) At daybreak reproductive biology and isolating mechanisms of Cirrhaea dependens (Orchidaceae). Plant Biol 8:494–502

    Article  CAS  PubMed  Google Scholar 

  • Pansarin LM, Pansarin ER, Sazima M (2014) Osmophore structure and phylogeny of Cirrhaea (Orchidaceae, Stanhopeinae). Bot J Linn Soc 176:369–383

    Article  Google Scholar 

  • Pearse AGE (1961) Histochemistry, theoretical and applied, 2nd edn. Little Brown, Boston

    Google Scholar 

  • Possobom CCF, Guimarães E, Machado SR (2015) Structure and secretion mechanisms of floral glands in Diplopterys pubipetala (Malpighiaceae), a neotropical species. Flora 211:26–39

    Article  Google Scholar 

  • Pridgeon AM, Stern WL (1983) Ultrastructure of osmophores in Restrepia (Orchidaceae). Am J Bot 70:1233–1243. https://doi.org/10.2307/2443293

    Article  Google Scholar 

  • Pridgeon AM, Stern WL (1985) Osmophores of Scaphosepalum (Orchidaceae). Bot Gaz 146:115–123. https://doi.org/10.1086/337505

    Article  Google Scholar 

  • Primack RB (1979) Reproductive biology of Discaria toumatou (Rhamnaceae). N Z J Bot 17:9–13. https://doi.org/10.1080/0028825X.1979.10425156

    Article  Google Scholar 

  • Raghavan V (1997) Molecular embryology of flowering plants. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212. https://doi.org/10.1083/jcb.17.1.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero GA (1992) Non-functional flowers in Catasetum orchids (Catasetinae, Orchidaceae). Bot J Linn Soc 109:305–313

    Article  Google Scholar 

  • Romero GA, Nelson CE (1986) Sexual dimorphism in Catasetum orchids: forcible pollen emplacement and male flower competition. Science 232:1538–1540

    Article  CAS  PubMed  Google Scholar 

  • Romero G, Pridgeon A (2009) Subtribes Catasetinae. Genera Orchid 5:11–12

    Google Scholar 

  • Roubik DW, Hanson PE (2004) Abejas de orquídeas de la América tropical: Biología y guía de campo. Editorial INBio, Costa Rica

    Google Scholar 

  • Şeker ŞS, Akbulut MK, Şenel G (2016) Labellum micromorphology of some orchid genera (Orchidaceae) distributed in the Black Sea region in Turkey. Turk J Bot 40:623–636

    Article  Google Scholar 

  • Shorthouse DP. 2010. SimpleMappr, an online tool to produce publication-quality point maps. [Retrieved from https://www.simplemappr.net; last accessed December 22, 2020]

  • Stern WL, Curry KJ, Pridgeon AM (1987) Osmophores of Stanhopea (Orchidaceae). Am J Bot 74:1323–1331. https://doi.org/10.1002/j.1537-2197.1987.tb08747.x

    Article  Google Scholar 

  • Stpiczyńska M (1993) Anatomy and ultrastructure of osmophores of Cymbidium tracyanumrolfe (Orch/Daceae). Acta Soc Bot Pol 62:5–9

    Article  Google Scholar 

  • Stpiczyńska M (2001) Osmophores of the fragrant orchid Gymnadenia conopsea L. (Orchidaceae). Acta Soc Bot Pol 70:91–96

    Article  Google Scholar 

  • Stpiczyńska M, Davies KL (2008) Elaiophore structure and oil secretion in flowers of Oncidium trulliferum Lindl. and Ornithophora radicans (Rchb. f.) Garay and Pabst. (Oncidiinae: Orchidaceae). Ann Bot 101:375–384

    Article  PubMed  Google Scholar 

  • Stpiczyńska M, Davies KL, Kamińska M (2015) Diverse labellar secretions in African Bulbophyllum (Orchidaceae: Bulbophyllinae) sections Ptiloglossum, Oreonastes and Megaclinium. Bot J Linn Soc 179:266–287

    Article  Google Scholar 

  • Tölke ED, Bachelier JB, de Lima EA, Ferreira MJP, Demarco D, Carmello-Guerreiro SM (2018) Osmophores and floral fragrance in Anacardium humile and Mangifera indica (Anacardiaceae): an overlooked secretory structure in Sapindales. AoB Plants 10:1–14. https://doi.org/10.1093/aobpla/ply062

    Article  CAS  Google Scholar 

  • Tölke ED, Capelli NDV, Pastori T, Alencar AC, Cole TC, Demarco D (2019) Diversity of floral glands and their secretions in pollinator attraction. In: Merillon JM, Ramawat K (eds) Co-evolution of secondary metabolites. Reference series in phytochemistry. Springer, Bordeaux, pp 1–46

    Google Scholar 

  • Vogel S (1990) The role of scent glands in pollination. Smithsonian Institution Libraries, Washington

    Google Scholar 

  • Wiśniewska N, Lipińska MM, Gołębiowski M, Kowalkowska AK (2019) Labellum structure of Bulbophyllum echinolabium JJ Sm. (section Lepidorhiza Schltr., Bulbophyllinae Schltr., Orchidaceae Juss.). Protoplasma 256:1185–1203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zarlavsky GE (2014) Histología Vegetal: técnicas simples y complejas. Soc Argentina Botánica, Buenos Aires

    Google Scholar 

  • Zini LM, Galati BG, Gotelli M, Zaelavsky G, Ferrucci MS (2019) Carpellary appendages in Nymphaea and Victoria (Nymphaeaceae): evidence of their role as osmophores based on morphology, anatomy and ultrastructure. Bot J Linn Soc 191:421–439

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Zarvlasky for technical assistance, to family Götz and Alparamis S.A. for the permission to conduct this study at Reserva El Bagual (Formosa), A. Di Giacomo for logistical support, A. Avalos and L.J. Álvarez for his help in the field, A. Avalos for the photograph of orchid-bees in flowers of Catasetum fimbriatum, L.J. Álvarez for the identification of orchid bees, and C. Peichoto for making cultivated plant material available (Corrientes). B. Galati, S. Aliscioni, and A. Avalos and three anonymous reviewers provided constructive criticism to previous drafts. MMG and JPT are affiliated to the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.

Funding

This work was supported by the Universidad de Buenos Aires (UBACyT grant numbers 20020160100012BA and 20020130200203BA) and Consejo Nacional de Investigaciones Científicas y Técnicas (grant number PIP 11220110100312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofía Daniela Reposi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Handling Editor: Hanns H. Kassemeyer

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reposi, S.D., Gotelli, M.M. & Torretta, J.P. Anatomy and ultrastructure floral osmophores of Catasetum fimbriatum (Orchidaceae). Protoplasma 258, 1091–1102 (2021). https://doi.org/10.1007/s00709-021-01625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-021-01625-1

Keywords

Navigation