Skip to main content
Log in

Culture age of Tulasnella affects symbiotic germination of the critically endangered Wyong sun orchid Thelymitra adorata (Orchidaceae)

  • RESEARCH
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Orchids (Orchidaceae) are dependent on mycorrhizal fungi for germination and to a varying extent as adult plants. We isolated fungi from wild plants of the critically endangered terrestrial orchid Thelymitra adorata and identified them using a multi-region barcoding approach as two undescribed Tulasnella species, one in each of phylogenetic group II and III (OTU1) of the Tulasnellaceae. Using symbiotic propagation methods, we investigated the role of Tulasnella identity (species and isolate) and age post isolation, on the fungus’s ability and efficacy in germinating T. adorata. The group II isolate did not support germination. Seed germination experiments were conducted using either (i) three different isolates of OTU1, (ii) 4- and 12-week-old fungal cultures (post isolation) of a single isolate of OTU1, and (iii) T. subasymmetrica which is widespread and known to associate with other species of Thelymitra. Culture age and fungal species significantly (P < 0.05) affected the time to germination and percentage of seed germination, with greater and faster germination with 4-week-old cultures. Tulasnella subasymmetrica was able to germinate T. adorata to leaf stage, although at slightly lower germination percentages than OTU1. The ability of T. adorata to germinate with T. subasymmetrica may allow for translocation sites to be considered outside of its native range. Our findings on the age of Tulasnella culture affecting germination may have applications for improving the symbiotic germination success of other orchids. Furthermore, storage of Tulasnella may need to take account of the culture age post-isolation, with storage at − 80 °C as soon as possible recommended, post isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ALA (2022) Atlas of living Australia website at http://www.ala.org.au. Accessed 1 December 2021

  • Alexander C, Hadley G (1983) Variation in symbiotic activity of Rhizoctonia isolates from Goodyera repens mycorrhizas. Trans Br Mycol 80:99–106

    Article  Google Scholar 

  • Arditti J, Ghani AK (2000) Tansley Review No. 110. Numerical and physical properties of orchid seeds and their biological implications. New Phytol 145:367–421

    Article  PubMed  Google Scholar 

  • Arifin AR, May TW, Linde CC (2021) New species of Tulasnella associated with Australian terrestrial orchids in the Cryptostylidinae and Drakaeinae. Mycologia 113:212–230

    Article  CAS  PubMed  Google Scholar 

  • Arifin AR, Reiter N, May TW, Linde CC (2022) New species of Tulasnella associated with Australian terrestrial orchids in the subtribes Megastylidinae and Thelymitrinae. Mycologia 114:388–412

    Article  CAS  PubMed  Google Scholar 

  • Beer JG (1863) Beitra ̈ge zur morphologie und biologie der familie der orchideen. Carl Gerold’s Sohn, Vienna

    Book  Google Scholar 

  • Bernard N (1909) L’évolution dans la symbiose. Les orchidées et leurs champignons commensaux. Ann Sci Nat 9:1–196

    Google Scholar 

  • Beyrle H, Penningsfeld F, Hockf B (1991) The role of nitrogen concentration in determining the outcome of the interaction between Dactylorhiza incarnata (L.) Soó and Rhizoctonia sp. New Phytol 117:665–672

    Article  CAS  Google Scholar 

  • Beyrle H (1995) The role of phytohormones in the function and biology of mycorrhizas. In Mycorrhiza: structure, function, molecular biology and biotechnology 365–390. Berlin, Heidelberg: Springer Berlin Heidelberg

  • Boudier E (1896) Not sur une nouvelle espece de Prototremella Pat. JBot 10:85–87(1)

  • Butt TM, Wang C, Shah FA, Hall R (2006) Degeneration of entomogenous fungi. In An ecological and societal approach to biological control 213–226. Springer, Dordrecht

  • Cameron DD, Johnson I, Leake JR, Read DJ (2007) Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. Ann Bot 99:831–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron DD, Johnson I, Read DJ, Leake JR (2008) Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytol 180:176–184

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in orchids: evidence from plant–fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416

    Article  CAS  PubMed  Google Scholar 

  • Clements MA, Ellyard RK (1979) The symbiotic germination of Australian terrestrial orchids [Pterostylis, Diuris, Thelymitra inoculates with mycorrhizal fungi Tulasnella and Ceratobasidium]. Am Orchid Soc Bull 48:810–816

    Google Scholar 

  • Copeland L, Backhouse G (2022) Guide to native orchids of NSW and ACT. CSIRO Publishing Canberra, Australia

    Book  Google Scholar 

  • Cruz D, Suárez JP, Kottke I, Piepenbring M, Oberwinkler F (2011) Defining species in Tulasnella by correlating morphology and nrDNA ITS-5.8 S sequence data of basidiomata from a tropical Andean forest. Mycoll Prog 10:229–238

    Article  Google Scholar 

  • Cruz D, Suárez JP, Kottke I, Piepenbring M (2014) Cryptic species revealed by molecular phylogenetic analysis of sequences obtained from basidiomata of Tulasnella. Mycologia 106:708–722

    Article  PubMed  Google Scholar 

  • Dearnaley JD (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486

    Article  PubMed  Google Scholar 

  • Dearnaley JD, Martos F, Selosse MA (2012) 12 Orchid mycorrhizas: molecular ecology, physiology, evolution, and conservation aspects. In Fungal associations 207–230. Springer, Berlin, Heidelberg

  • Department of Planning and Environment (2021) Wyong sun orchid - profile | NSW Environment, Energy and Science [Internet]. 2021 [cited 2021 May 17]. Available from: https://www.environment.nsw.gov.au/threatenedSpeciesApp/profile.aspx?id=20099

  • Dodson CH, Gentry AH (1991) Biological extinction in western Ecuador. Ann MoBotGard 1:273–295

    Article  Google Scholar 

  • Downing JL, Liu H, McCormick MK, Arce J, Alonso D, Perez JL (2020) Generalized mycorrhizal interactions and fungal enemy release drive range expansion of orchids in southern Florida. Ecosphere 11:e03228

  • Dressler RL (1981) The orchids: natural history and classification. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Fochi V, Chitarra W, Kohler A, Voyron S, Singan VR, Lindquist EA, Barry KW, Girlanda M, Grigoriev IV, Martin F, Balestrini R (2017) Fungal and plant gene expression in the Tulasnella calosporaSerapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New Phytol 213:365–379

    Article  CAS  PubMed  Google Scholar 

  • Fox J, Weisberg S (2018) An R companion to applied regression. Sage publications

  • Freestone M, Linde C, Swarts N, Reiter N (2022) Ceratobasidium orchid mycorrhizal fungi reveal intraspecific variation and interaction with different nutrient media in symbiotic germination of Prasophyllum (Orchidaceae). Symbiosis 87:255–268

    Article  CAS  Google Scholar 

  • Freestone M, Linde C, Swarts N, Reiter N (2023) Asymbiotic germination of Prasophyllum (Orchidaceae) requires low mineral concentration. Aus J Bot 71:67–78

    Article  CAS  Google Scholar 

  • Freestone MW, Swarts ND, Reiter N, Tomlinson S, Sussmilch FC, Wright MM, Holmes GD, Phillips RD, Linde CC (2021) Continental-scale distribution and diversity of Ceratobasidium orchid mycorrhizal fungi in Australia. Ann Bot 128:329–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freitas EFS, da Silva M, Cruz EdS et al (2020) Diversity of mycorrhizal Tulasnella associated with epiphytic and rupicolous orchids from the Brazilian Atlantic Forest, including four new species. Sci Rep 10:7069. https://doi.org/10.1038/s41598-020-63885-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuji M, Miura C, Yamamoto T, Komiyama S, Suetsugu K, Yagame T, Yamato M, Kaminaka H (2020) Relative effectiveness of Tulasnella fungal strains in orchid mycorrhizal symbioses between germination and subsequent seedling growth. Symbiosis 81:53–63

    Article  CAS  Google Scholar 

  • Gebauer G, Preiss K, Gebauer AC (2016) Partial mycoheterotrophy is more widespread among orchids than previously assumed. New Phytol 211:11–15

    Article  PubMed  Google Scholar 

  • Girlanda M, Segreto R, Cafasso D, Liebel HT, Rodda M, Ercole E, Cozzolino S, Gebauer G, Perotto S (2011) Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. Am J B 98:1148–1163

    Article  Google Scholar 

  • Hadley G (1970) Non-specificity of symbiotic infection in orchid mycorrhiza. New Phytol 69:1015–1023

  • Hadley G, Ong SH (1978) Nutritional Requirements of Orchid Endophytes New Phytol 81:561–569

    CAS  Google Scholar 

  • Harvais G, Hadley G (1967) The development of Orchis purpurella in asymbiotic and inoculated cultures. New Phytol 66:217–230

    Article  Google Scholar 

  • Herrera H, Valadares R, Contreras D, Bashan Y, Arriagada C (2017) Mycorrhizal compatibility and symbiotic seed germination of orchids from the Coastal Range and Andes in south central Chile. Mycorrhiza 27:175–188

    Article  CAS  PubMed  Google Scholar 

  • Hinsley A, De Boer HJ, Fay MF, Gale SW, Gardiner LM, Gunasekara RS, Kumar P, Masters S, Metusala D, Roberts DL, Veldman S (2018) A review of the trade in orchids and its implications for conservation. BotJe LinnSoc 186:435–455

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Huynh TT, Thomson R, Mclean CB, Lawrie AC (2009) Functional and genetic diversity of mycorrhizal fungi from single plants of Caladenia formosa (Orchidaceae). Annf Bot 104:757–765

    Article  CAS  Google Scholar 

  • Jeanes JA (2011) Resolution of the Thelymitra aristata (Orchidaceae) complex of south-eastern Australia. Muelleria 29:110–129

    Article  Google Scholar 

  • Jiang N, Zhang JX, Da Silva JA, Duan J, Liu HT, Zeng SJ (2016) Stimulatory effects of sodium hypochlorite and ultrasonic treatments on tetrazolium staining and seed germination in vitro of Paphiopedilum SCBG Red Jewel. Seed Sci Technol 44:77–90

    Article  Google Scholar 

  • Jones, (2021) A complete guide to native orchids of Australia, 3rd edn. Reed New Holland Publishers Pty Ltd, Auckland, New Zealand

    Google Scholar 

  • Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS (2017) Model finder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kartzinel TR, Trapnell DW, Shefferson RP (2013) Highly diverse and spatially heterogeneous mycorrhizal symbiosis in a rare epiphyte is unrelated to broad biogeographic or environmental features. Mol Ecol 23:5949–5961

    Article  Google Scholar 

  • Kawakami K (1960) On the change of characteristics of the silkworrm muscardines through successive cultures. Bull Seric Exp Stn 16:83–99

    Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Cooper BS, A, Markowitz S, Duran C, Their T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Khamchatra N, Dixon KW, Tantiwiwat S, Piapukiew J (2016) Symbiotic seed germination of an endangered epiphytic slipper orchid, Paphiopedilum villosum (Lindl.) Stein. from Thailand. South Afr J Bot 104:76–81

    Article  Google Scholar 

  • Kuga U, Sakamoto N, Yurimoto H (2014) Stable isotope imaging reveals that both live and degenerating fungal pelotons transfer carbon and nitrogen to orchid protocorms. New Phytol 202:594–605

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauzer DE, St-Arnaud MA, Barabe DE (1994) Tetrazolium staining and in vitro germination of mature seeds of Cypripedium acaule (Orchidaceae). Lindleyana 9:197–204

    Google Scholar 

  • Leake JR. Tansley Review No. 69 (1994) The biology of myco-heterotrophic (saprophytic) plants. New Phytol 127:171–216

  • León-Yánez S, Valencia R, Pitman N, Endara L, Ulloa Ulloa C, Navarette H (2011) Red Book of the endemic plants of Ecuador. Pontificia Universidad Católica del Ecuador, Quito, pp 344–359

    Google Scholar 

  • Li T, Yang W, Wu S, Selosse MA, Gao J (2021) Progress and prospects of mycorrhizal fungal diversity in orchids. Front Plant Sci 12:646325

    Article  PubMed  PubMed Central  Google Scholar 

  • Linde CC, May TW, Phillips RD, Ruibal M, Smith LM, Peakall R (2017) New species of Tulasnella associated with terrestrial orchids in Australia. IMA Fungus 8:27–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Linde CC, Phillips RD, Crisp MD, Peakall R (2014) Congruent species delineation of Tulasnella using multiple loci and methods. New Phytol 201:6–12

    Article  PubMed  Google Scholar 

  • Masuhara G, Katsuya K (1994) In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon) Ames, var. amoena (M. Bieberstein) Hara (Orchidaceae). New Phytol 127:711–718

    Article  PubMed  Google Scholar 

  • McCormick MK, Jacquemyn H (2014) What constrains the distribution of orchid populations? New Phytol 202:392–400

    Article  Google Scholar 

  • Mehra S, Morrison PD, Coates F, Lawrie AC (2017) Differences in carbon source utilisation by orchid mycorrhizal fungi from common and endangered species of Caladenia (Orchidaceae). Mycorrhiza 27:95–108

    Article  CAS  PubMed  Google Scholar 

  • Meng YY, Zhang WL, Selosse MA, Gao JY (2019) Are fungi from adult orchid roots the best symbionts at germination? A case study. Mycorrhiza 29:541–547

    Article  CAS  PubMed  Google Scholar 

  • Merritt D, Hay F, Swarts N, Sommerville K, Dixon K (2014) Ex situ conservation and cryopreservation of orchid germplasm. Int J Plant Sci 175:46–58

    Article  CAS  Google Scholar 

  • Midgley DJ, Jordan LA, Saleeba JA, McGee PA (2006) Utilisation of carbon substrates by orchid and ericoid mycorrhizal fungi from Australian dry sclerophyll forests. Mycorrhiza 16:175–182

    Article  CAS  PubMed  Google Scholar 

  • Ming MA, Tan TK, Wong SM (2003) Identification and molecular phylogeny of Epulorhiza isolates from tropical orchids. Mycol Res 107:1041–1049

    Article  Google Scholar 

  • Mujica MI, Cisternas M, Claro A, Simunovic M, Pérez F (2021) Nutrients and fungal identity affect the outcome of symbiotic germination in Bipinnula fimbriata (Orchidaceae). Symbiosis 83:91–101

    Article  CAS  Google Scholar 

  • Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DQ, Li H, Tran TT, Sivasithamparam K, Jones MG, Wylie SJ (2020) Four Tulasnella taxa associated with populations of the Australian evergreen terrestrial orchid Cryptostylis ovata. Fungal Biol 124:24–33

    Article  CAS  PubMed  Google Scholar 

  • NSW Government (2022) Saving our species, help save the Wyong sun orchid profile. Accessed March https://www.environment.nsw.gov.au/savingourspeciesapp/ViewFile.aspx?ReportProjectID=113&ReportProfileID=20099

  • Nurfadilah S, Swarts ND, Dixon KW, Lambers H, Merritt DJ (2013) Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. Ann Bot 111:1233–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberwinkler F, Cruz D, Suárez JP (2017) Biogeography and ecology of Tulasnellaceae. In Biogeography of mycorrhizal symbiosis 237–271. Springer, Cham

  • Oktalira FT, Whitehead MR, Linde CC (2019) Mycorrhizal specificity in widespread and narrow-range distributed Caladenia orchid species. Fungal Ecol 42:100869

    Article  Google Scholar 

  • Pandey M, Sharma J, Taylor DL, Yadon VL (2013) A narrowly endemic photosynthetic orchid is non-specific in its mycorrhizal associations. Mol Ecol 22:2341–2354

    Article  PubMed  Google Scholar 

  • Phillips RD, Barrett MD, Dixon KW, Hopper SD (2011) Do mycorrhizal symbioses cause rarity in orchids? J Ecol 99:858–869

    Article  Google Scholar 

  • Phillips RD, Reiter N, Peakall R (2020) Orchid conservation: from theory to practice. Ann Bot 126:345–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Prescott J, Feldmann H, Safronetz D (2017) Amending Koch’s postulates for viral disease: when “growth in pure culture” leads to a loss of virulence. Antiviral Res 137:1–5

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Yang Y, Dong S, He Q, Jia Y, Zhao L, Yu S, Liu H, Liu B, Yan Y, Xiang J (2017) Threatened species list of China’s higher plants. Biodivers Sci 25:696

    Article  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Raleigh R (2005) Propagation and biology of Arachnorchis (Orchidacae) and their mycorrhizal fungi (Doctoral dissertation, RMIT University)

  • Ramsay RR, Dixon KW, Sivasithamparam K (1986) Patterns of infection and endophytes associated with Western Australian orchids. Lindleyana 1:203–214

    Google Scholar 

  • Rasmussen HN (1995) Terrestrial orchids: from seed to mycotrophic plant. Cambridge University Press

    Book  Google Scholar 

  • Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163

    Article  CAS  Google Scholar 

  • Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118:334–345

    Article  Google Scholar 

  • Rasmussen HN, Dixon KW, Jersáková J, Těšitelová T (2015) Germination and seedling establishment in orchids: a complex of requirements. Ann Bot 116:391–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter N, Whitfield J, Pollard G, Bedggood W, Argall M, Dixon K, Davis B, Swarts N (2016) Orchid re-introductions: an evaluation of success and ecological considerations using key comparative studies from Australia. Plant Ecol 217:81–95

    Article  Google Scholar 

  • Reiter N, Lawrie AC, Linde CC (2018) Matching symbiotic associations of an endangered orchid to habitat to improve conservation outcomes. Ann Bot 122:947–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter N, Phillips RD, Swarts ND, Wright M, Holmes G, Sussmilch FC, Davis BJ, Whitehead MR, Linde CC (2020) Specific mycorrhizal associations involving the same fungal taxa in common and threatened Caladenia (Orchidaceae): implications for conservation. Ann Bot 126:943–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter N, Dimon R, Freestone MW, Davis B, Newby ZJ, Swarts N, Somerville K (2021) Isolation, propagation and storage of orchid mycorrhiza and legume rhizobia in “plant germplasm conservation in Australia.” Publisher, Australian Network for Plant Conservation, Canberra, Australia

    Google Scholar 

  • Rockwood LP (1950) Entomogenous fungi of the family Entomophthoraceae in the Pacific Northwest. J Economic Entomology 43:704–707

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • RStudio Team (2021) RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA 

  • Ruibal MP, Peakall R, Smith LM, Linde CC (2013) Phylogenetic and microsatellite markers for Tulasnella (Tulasnellaceae) mycorrhizal fungi associated with Australian orchids. ApplPlant Sci 1:1200394

    Google Scholar 

  • Safronetz D, Prescott J, Feldmann F, Haddock E, Rosenke R, Brining D, Dahlstrom E, Porcella SF, Ebihara H, Scott DP, Hjelle B, Feldmann H (2014) Pathophysiology of hantavirus pulmonary syndrome in Rhesus macaques. Proc Nat Acad Sci 111:7114–7119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaerffenberg B (1964) Biological and environmental conditions for the development of mycoses caused by Beauveria and Metarhizium. J Insect Pathol 6:8–20

    Google Scholar 

  • Shao SC, Wang QX, Beng KC, Zhao DK, Jacquemyn H (2020) Fungi isolated from host protocorms accelerate symbiotic seed germination in an endangered orchid species (Dendrobium chrysotoxum) from southern China. Mycorrhiza 30:529–539

    Article  PubMed  Google Scholar 

  • Smith SE (1966) Physiology and ecology of orchid mycorrhizal fungi with reference to seedling nutrition. New Phytol 65:488–499

    Article  Google Scholar 

  • Smith SE (1967) Carbohydrate translocation in orchid mycorrhizas. New Phytol 66:371–378

    Article  CAS  Google Scholar 

  • Sommerville KD, Siemon JP, Wood CB, Offord CA (2008) Simultaneous encapsulation of seed and mycorrhizal fungi for long-term storage and propagation of terrestrial orchids. Aus J Bot 56:609–615

    Article  Google Scholar 

  • Suárez JP, Weiß M, Abele A, Garnica S, Oberwinkler F, Kottke I (2006) Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol Res 110:1257–1270

    Article  PubMed  Google Scholar 

  • Swarts ND, Dixon KW (2017) Conservation methods for terrestrial orchids. J. Ross Publishing, United States

  • Selosse MA, Martos F (2014) Do chlorophyllous orchids heterotrophically use mycorrhizal fungal carbon? Trends Plant Sci 19:683–685

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. Academic Press, Cambridge, UK

    Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Teixeira da Silva JA, Tsavkelova EA, Zeng S, Ng TB, Parthibhan S, Dobránszki J, Cardoso JC, Rao MV (2015) Symbiotic in vitro seed propagation of Dendrobium: fungal and bacterial partners and their influence on plant growth and development. Planta 242:1–22

    Article  CAS  PubMed  Google Scholar 

  • Tan XM, Wang CL, Chen XM, Zhou YQ, Wang YQ, Luo AX, Liu ZH, Guo SX (2014) In vitro seed germination and seedling growth of an endangered epiphytic orchid, Dendrobium officinale, endemic to China using mycorrhizal fungi (Tulasnella sp.). Sci Hortic 165:62–68

    Article  Google Scholar 

  • Taylor DL, Bruns TD, Leake JR, Read DJ (2002) Mycorrhizal specificity and function in myco-heterotrophic plants. In Mycorrhizal ecology (2002) (375–413). Springer, Berlin, Heidelberg

  • Taylor DL, McCormick MK (2008) Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol 177:1020–1033

    Article  CAS  PubMed  Google Scholar 

  • Van Waes JM, Debergh PC (1986) Adaptation of the tetrazolium method for testing the seed viability and scanning electron microscopy study of some Western European orchids. Physiol Plant 66:435–442

    Article  Google Scholar 

  • Wang T, Song Z, Wang X, Xu L, Sun Q, Li L (2018) Functional insights into the roles of hormones in the Dendrobium officinale-Tulasnella sp. germinated seed symbiotic association. Int J Mol Sci 19: 3484

  • WCSP (2021) World Checklist of Selected Plant Families. Facilitated by the Royal Botanic Gardens, Kew. http://wcsp.science.kew.org/ (1 Dec 2021)

  • Warcup JH (1950) The soil-plate method for isolation of fungi from soil. Nature 166:117–118

    Article  CAS  PubMed  Google Scholar 

  • Warcup JH (1971) Specificity of mycorrhizal association in some Australian terrestrial orchids. New Phytol 70:41–46

    Article  Google Scholar 

  • Warcup JH, Talbot PH (1971) Perfect states of rhizoctonias associated with orchids. II New Phytol 70:35–40

    Article  Google Scholar 

  • Warcup JH (1973) Symbiotic germination of some Australian terrestrial orchids. New Phytol 72:387–392

    Article  Google Scholar 

  • Warcup JH (1981) the Mycorrhizal relationships of Australian orchids. New Phytol 87:371–381

    Article  Google Scholar 

  • Warcup JH, Talbot PH (1965) Ecology and identity of mycelia from soil. III Trans Br Mycol 48:249–259

    Article  Google Scholar 

  • Warcup JH, Talbot PHB (1967) Perfect states of Rhizoctonias associated with orchids. New Phytol 66:631–641

    Article  Google Scholar 

  • Weiss M, Selosse MA, Rexer KH, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    Article  PubMed  Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: A guide to methods and applications. New York: Academic Press, Inc. p 315–322

  • Wickham H, François R, Henry L, Müller K (2022) dplyr: A grammar of data manipulation. R package version 1.0.8. https://CRAN.R-project.org/package=dplyr

  • Wraith J, Pickering C (2019) A continental scale analysis of threats to orchids. Biol Cons 234:7–17

    Article  Google Scholar 

  • Yukawa T, Ogura-Tsujita Y, Shefferson RP, Yokoyama J (2009) Mycorrhizal diversity in Apostasia (Orchidaceae) indicates the origin and evolution of orchid mycorrhiza. Am J Bot 96:1997–2009

    Article  PubMed  Google Scholar 

  • Zettler LW (1997) Terrestrial orchid conservation by symbiotic seed germination: techniques and perspectives. Selbyana 18:88–94

    Google Scholar 

  • Zettler LW, Dvorak CJ (2021) Tulasnella calospora (UAMH 9824) retains its effectiveness at facilitating orchid symbiotic germination in vitro after two decades of subculturing. Bot Stud 62:1–8

    Article  Google Scholar 

Download references

Acknowledgements

We thank Antony Von Chrismar and Lucinda Ransom (NSW Department of Planning and Environment), Brian Towle (Ecoplanning Consultancy), Gavin Phillips and staff at the Australian PlantBank (Botanic Gardens of Sydney) for help with acquiring land access, collection, processing, storage and postage of Thelymitra adorata seed used in this study. We acknowledge the use of services and facilities of AGRF. We thank Dr Caroline Cristofolini for research assistance and Maja Zweck for technical assistance. We thank the volunteers at the RBGV Assoc Prof Charles Young, Eve Almond, Lynda Entwisle, Jenny Raven, Bryan Lawrence, Andrew Cosby and Neil Freestone for assistance in maintaining ex situ collections.

Funding

NSW Government’s Saving our Species (SoS) Program, NSW Department of Planning and Environment funding to NR and ARC Linkage Grant LP200200264 awarded to NR.

Author information

Authors and Affiliations

Authors

Contributions

N.R wrote the manuscript and took part in collecting and analysing the data. R.D took part in collecting and analysing the data. A.A and C.L undertook phylogenetic analysis. All authors reviewed the manuscript.

Corresponding author

Correspondence to Noushka Reiter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

572_2023_1131_MOESM1_ESM.docx

Supplementary Table 1: Pairwise minimum and maximum ITS sequence divergences within and between Tulasnella (group III) dataset. (DOCX 14 KB)

Supplementary Table 2: Germination of Thelymitra adorata using one-week-old cultures. (DOCX 14 KB)

572_2023_1131_MOESM3_ESM.docx

Supplementary Table 3: Composition of terrestrial orchid soil mix for growing Thelymitra adorata to adult plants. (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiter, N., Dimon, R., Arifin, A. et al. Culture age of Tulasnella affects symbiotic germination of the critically endangered Wyong sun orchid Thelymitra adorata (Orchidaceae). Mycorrhiza 33, 409–424 (2023). https://doi.org/10.1007/s00572-023-01131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-023-01131-7

Keywords

Navigation